湖南省衡阳市衡阳县第三中学2025届高一数学第一学期期末联考模拟试题含解析_第1页
湖南省衡阳市衡阳县第三中学2025届高一数学第一学期期末联考模拟试题含解析_第2页
湖南省衡阳市衡阳县第三中学2025届高一数学第一学期期末联考模拟试题含解析_第3页
湖南省衡阳市衡阳县第三中学2025届高一数学第一学期期末联考模拟试题含解析_第4页
湖南省衡阳市衡阳县第三中学2025届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市衡阳县第三中学2025届高一数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.2.已知且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知唯一的零点在区间、、内,那么下面命题错误的A.函数在或,内有零点B.函数在内无零点C.函数在内有零点D.函数在内不一定有零点4.若一束光线从点射入,经直线反射到直线上的点,再经直线反射后经过点,则点的坐标为()A. B.C. D.5.已知,,则()A. B.C. D.6.已知函数y=xa,y=xb,y=cx的图象如图所示,则A.c<b<a B.a<b<cC.c<a<b D.a<c<b7.平行于同一平面的两条直线的位置关系是A.平行 B.相交或异面C.平行或相交 D.平行、相交或异面8.已知等边两个顶点,且第三个顶点在第四象限,则边所在的直线方程是A. B.C. D.9.已知函数:①y=2x;②y=log2x;③y=x-1;④y=;则下列函数图像(第一象限部分)从左到右依次与函数序号的对应顺序是()A.②①③④ B.②③①④C.④①③② D.④③①②10.已知函数()的部分图象如图所示,则的值分别为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某同学在研究函数时,给出下列结论:①对任意成立;②函数的值域是;③若,则一定有;④函数在上有三个零点.则正确结论的序号是_______.12.圆柱的侧面展开图是边长分别为的矩形,则圆柱的体积为_____________13.已知函数,则当_______时,函数取得最小值为_________.14.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②若函数的图象关于直线对称,则;③函数在上单调递减,在上单调递增;④当时,函数有四个零点其中正确的是___________(填上所有正确说法的序号)15.化简________.16.已知表示这个数中最大的数.能够说明“对任意,都有”是假命题的一组整数的值依次可以为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.观察以下等式:①②③④⑤(1)对①②③进行化简求值,并猜想出④⑤式子的值;(2)根据上述各式的共同特点,写出一条能反映一般规律的等式,并对等式的正确性作出证明18.已知函数,函数的最小正周期为,是函数的一条对称轴.(1)求函数的对称中心和单调区间;(2)若,求函数在的最大值和最小值,并写出对应的的值19.如果一个函数的值域与其定义域相同,则称该函数为“同域函数”.已知函数的定义域为且.(Ⅰ)若,,求的定义域;(Ⅱ)当时,若为“同域函数”,求实数的值;(Ⅲ)若存在实数且,使得为“同域函数”,求实数的取值范围.20.已知函数,,.(1)若,解关于方程;(2)设,函数在区间上的最大值为3,求的取值范围;(3)当时,对任意,函数在区间上的最大值与最小值的差不大于1,求的取值范围.21.如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.(1)将图书馆底面矩形ABCD的面积S表示成θ的函数.(2)若R=45m,求当θ为何值时,矩形ABCD的面积S最大?最大面积是多少?(取=1.414)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用平面向量的线性运算及平面向量的基本定理求解即可【详解】∵∴∵∴=∴=,∴故选:C2、D【解析】根据充分、必要条件的知识确定正确选项.【详解】“”时,若,则,不能得到“”.“”时,若,则,不能得到“”.所以“”是“”的既不充分也不必要条件.故选:D3、C【解析】利用零点所在的区间之间的关系,将唯一的零点所在的区间确定出,则其他区间就不会存在零点,进行选项的正误筛选【详解】解:由题意,唯一的零点在区间、、内,可知该函数的唯一零点在区间内,在其他区间不会存在零点.故、选项正确,函数的零点可能在区间内,也可能在内,故项不一定正确,函数的零点可能在区间内,也可能在内,故函数在内不一定有零点,项正确故选:【点睛】本题考查函数零点的概念,考查函数零点的确定区间,考查命题正误的判定.注意到命题说法的等价说法在判断中的作用4、C【解析】由题可求A关于直线的对称点为及关于直线的对称点为,可得直线的方程,联立直线,即得.【详解】设A关于直线的对称点为,则,解得,即,设关于直线的对称点为,则,解得,即,∴直线的方程为:代入,可得,故.故选:C.5、D【解析】由同角三角函数的平方关系计算即可得出结果.【详解】因为,,,,所以.故选:D6、A【解析】由指数函数、幂函数的图象和性质,结合图象可得a>1,b=12,【详解】由图象可知:a>1,y=xb的图象经过点4,2当x=1时,y=c∴c<b<a,故选:A【点睛】本题考查了函数图象的识别,关键掌握指数函数,对数函数和幂函数的图象和性质,属于基础题.7、D【解析】根据线面平行的位置关系及线线位置关系的分类及定义,可由已知两直线平行于同一平面,得到两直线的位置关系【详解】解:若,且则与可能平行,也可能相交,也有可能异面故平行于同一个平面的两条直线的位置关系是平行或相交或异面故选【点睛】本题考查的知识点是空间线线关系及线面关系,熟练掌握空间线面平行的位置关系及线线关系的分类及定义是详解本题的关键,属于基础题8、C【解析】如图所示,直线额倾斜角为,故斜率为,由点斜式得直线方程为.考点:直线方程.9、D【解析】图一与幂函数图像相对应,所以应④;图二与反比例函数相对应,所以应为③;图三与指数函数相对应,所以应为①;图四与对数函数图像相对应,所以应为②所以对应顺序为④③①②,故选D10、B【解析】由条件知道:均是函数的对称中心,故这两个值应该是原式子分母的根,故得到,由图像知道周期是,故,故,再根据三角函数的对称中心得到,故如果,根据,得到故答案为B点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法二、填空题:本大题共6小题,每小题5分,共30分。11、①②③【解析】由奇偶性判断①,结合①对,,三种情况讨论求值域,判断②,由单调性判断③,由③可知的图像与函数的图像只有两个交点,进而判断④,从而得出答案【详解】①,即,故正确;②当时,,由①可知当时,,当时,,所以函数的值域是,正确;③当时,,由反比例函数的单调性可知,在上是增函数,由①可知在上也是增函数,所以若,则一定有,正确;④由③可知的图像与函数的图像只有两个交点,故错误综上正确结论的序号是①②③【点睛】本题考查函数的基本性质,包括奇偶性,单调性,值域等,属于一般题12、或【解析】有两种形式的圆柱的展开图,分别求出底面半径和高,分别求出体积.【详解】圆柱的侧面展开图是边长为2a与a的矩形,当母线为a时,圆柱的底面半径是,此时圆柱体积是;当母线为2a时,圆柱的底面半径是,此时圆柱的体积是,综上所求圆柱的体积是:或,故答案为或;本题考查圆柱的侧面展开图,圆柱的体积,容易疏忽一种情况,导致错误.13、①.##②.【解析】根据求出的范围,根据余弦函数的图像性质即可求其最小值.【详解】∵,∴,∴当,即时,取得最小值为,∴当时,最小值为.故答案为:;-3.14、②③【解析】①:根据平面向量夹角的性质进行求解判断;②:利用函数的对称性,结合两角和(差)的正余弦公式进行求解判断即可;③:利用导数的性质、函数的奇偶性进行求解判断即可.④:根据对数函数的性质,结合零点的定义进行求解判断即可【详解】①:因为与的夹角为钝角,所以有且与不能反向共线,因此有,当与反向共线时,,所以有且,因此本说法不正确;②:因为函数的图象关于直线对称,所以有,即,于是有:,化简,得,因为,所以,因此本说法正确;③:因为,所以函数偶函数,,当时,单调递增,即在上单调递增,又因为该函数是偶函数,所以该在上单调递减,因此本说法正确;④:,问题转化为函数与函数的交点个数问题,如图所示:当时,,此时有四个交点,当时,,所以交点的个数不是四个,因此本说法不正确,故答案为:②③15、【解析】观察到,故可以考虑直接用辅助角公式进行运算.【详解】故答案为:.16、(答案不唯一)【解析】首先利用新定义,再列举命题为假命题的一组数值,再根据定义,验证命题是假命题.【详解】设,,则,而,,故命题为假命题,故依次可以为故答案为:(答案不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2);证明见解析.【解析】(1)利用特殊角的三角函数值计算即得;(2)根据式子的特点可得等式,然后利用和差角公式及同角关系式化简运算即得,【小问1详解】猜想:【小问2详解】三角恒等式为证明:=18、(1)对称中心是,单调递增区间是,单调递减区间是(2)当时,,当时,【解析】(1)由函数的最小正周期,求得,再根据当时,函数取到最值求得,根据函数的性质求对称中心和单调区间;(2)写出的解析式,根据定义域,求最值【详解】(1),,,所以,,对称中心是,单调递增区间是,单调递减区间是(2),,当时,,当时,【点睛】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)当,时,解出不等式组即可;(Ⅱ)当时,,分、两种情况讨论即可;(Ⅲ)分、且、且三种情况讨论即可.【详解】(Ⅰ)当,时,由题意知:,解得:.∴的定义域为;(Ⅱ)当时,,(1)当,即时,的定义域为,值域为,∴时,不是“同域函数”.(2)当,即时,当且仅当时,为“同域函数”.∴.综上所述,的值为.(Ⅲ)设的定义域为,值域为.(1)当时,,此时,,,从而,∴不是“同域函数”.(2)当,即,设,则的定义域.①当,即时,的值域.若为“同域函数”,则,从而,,又∵,∴的取值范围为.②当,即时,的值域.若为“同域函数”,则,从而,此时,由,可知不成立.综上所述,的取值范围为【点睛】关键点睛:解答本题的关键是理解清楚题意,能够分情况求出的定义域和值域.20、(1);(2);(3).【解析】(1)将代入函数的解析式,并求出函数的定义域,利用对数的运算法则可解出方程;(2)当时,,分、和三种情况讨论,去绝对值,分析函数在区间上的单调性,结合该函数在区间上的最大值为,可求出实数的取值范围;(3)利用对数的运算性质可得出,可知该函数在区间上为减函数,由题意得出对任意的恒成立,求出在上的最大值,即可得出实数的取值范围.【详解】(1)当时,,则,定义域为.由,可得,可得,解得或(舍去),因此,关于的方程的解为;(2)当时,.当时,对任意的恒成立,则,此时,函数在区间上为增函数,,合乎题意;当时,对任意的恒成立,则,此时,函数在区间上为减函数,,解得,不合乎题意;当时,令,得,此时,所以,函数在区间上为减函数,在区间上为增函数.,,由于,所以,解得.此时,.综上所述,实数的取值范围是;(3),由于内层函数在区间为减函数,外层函数为增函数,所以,函数在区间上为减函数,所以,,由题意可得,可得,所以,.①当时,;②当时,令,设,可得.下面利用定义证明函数在区间上的单调性,任取、且,即,,,,,,即,所以,函数在区间上单调递减,当时,函数取得最大值.综上所述,函数在上的最大值为,.因此,实数的取值范围是.【点睛】本题考查对数方程的求解、考查了利用带绝对值函数的最值求参数,同时也考查了函数不等式恒成立问题,考查运算求解能力,属于中等题.21、(1)S=R2sin-R2,θ∈;(2)当θ=时,矩形ABCD面积S最大,最大面积为838.35m2.【解析】(1)设OM与BC的交点为F,用表示出,,,从而可得面积的表达式;(2)结合正弦函数的性质求得最大值【详解】解:(1)由题意,可知点M为PQ的中点,所以OM⊥AD.设OM与BC的交点为F,则BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rs

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论