2025届西藏拉萨市那曲二中高一数学第一学期期末调研试题含解析_第1页
2025届西藏拉萨市那曲二中高一数学第一学期期末调研试题含解析_第2页
2025届西藏拉萨市那曲二中高一数学第一学期期末调研试题含解析_第3页
2025届西藏拉萨市那曲二中高一数学第一学期期末调研试题含解析_第4页
2025届西藏拉萨市那曲二中高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届西藏拉萨市那曲二中高一数学第一学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.经过点(2,1)的直线l到A(1,1),B(3,5)两点的距离相等,则直线l的方程为A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不对2.已知,,则下列不等式正确的是()A. B.C. D.3.下列函数中为奇函数,且在定义域上为增函数的有()A. B.C. D.4.设,若,则的最小值为A. B.C. D.5.下面四个不等式中不正确的为A. B.C. D.6.函数,对任意的非零实数,关于的方程的解集不可能是A B.C. D.7.在下列各图中,每个图的两个变量具有线性相关关系的图是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)8.已知在定义域上是减函数,且,则的取值范围为()A.(0,1) B.(-2,1)C.(0,) D.(0,2)9.要得到的图象,需要将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位10.若角的终边经过点,且,则()A.﹣2 B.C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若关于x方程有且仅有6个不同的实根.则实数a的取值范围是_______.12.已知函数,,其中表示不超过x的最大整数.例如:,,.①______;②若对任意都成立,则实数m的取值范围是______13.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)14.已知函数在区间是单调递增函数,则实数的取值范围是______15.已知幂函数过点,若,则________16.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数=(1)判断的奇偶性;(2)求在的值域18.在平面直角坐标系中,圆经过三点(1)求圆的方程;(2)若圆与直线交于两点,且,求的值19.已知函数f(x)=4cos(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间-π620.已知函数,且求函数的定义域;求满足实数x的取值范围21.在①f(x)是偶函数;②是f(x)的图象在y轴右侧的第一个对称中心;③f(x)相邻两条对称轴之间距离为.这三个条件中任选两个,补充在下面问题的横线上,并解答.已知函数f(x)=sin(x+)(>0,0<<π),满足________.(1)求函数f(x)的解析式;(2)将函数y=f(x)图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标变为原来的2倍后所得到的图象对应的函数记作y=g(x);若函数F(x)=f(x)+kg(x)在(0,nπ)内恰有2021个零点,求实数k与正整数n的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】当直线l的斜率不存在时,直线x=2显然满足题意;当直线l的斜率存在时,设直线l的斜率为k则直线l为y-1=kx-2,即由A到直线l的距离等于B到直线l的距离得:-kk化简得:-k=k-4或k=k-4(无解),解得k=2∴直线l的方程为2x-y-3=0综上,直线l的方程为2x-y-3=0或x=2故选C2、C【解析】利用指数函数、对数函数的单调性即可求解.【详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.3、C【解析】根据函数的奇偶性,可排除A,B;说明的奇偶性以及单调性,可判断C;根据的单调性,判断D.【详解】函数为非奇非偶函数,故A错;函数为偶函数,故B错;函数,满足,故是奇函数,在定义域R上,是单调递增函数,故C正确;函数在上是增函数,在上是增函数,在定义域上不单调,故D错,故选:C4、D【解析】依题意,,根据基本不等式,有.5、B【解析】A,利用三角函数线比较大小;B,取中间值1和这两个数比较;C,利用对数函数图象比较这两个数的大小;D,取中间值1和这两个数比较【详解】解:A,如图,利用三角函数线可知,所对的弧长为,,∴,A对;B,由于,B错;C,如图,,则,C对;D,,D对;故选:B【点睛】本题主要考查比较两个数的大小,考查三角函数线的作用,考查指对数式的大小,属于基础题6、D【解析】由题意得函数图象的对称轴为设方程的解为,则必有,由图象可得是平行于x轴的直线,它们与函数的图象必有交点,由函数图象的对称性得的两个解要关于直线对称,故可得;同理方程的两个解也要关于直线对称,同理从而可得若关于的方程有一个正根,则方程有两个不同的实数根;若关于的方程有两个正根,则方程有四个不同的实数根综合以上情况可得,关于的方程的解集不可能是.选D非选择题7、D【解析】由线性相关的定义可知:(2)中两变量线性正相关,(3)中两变量线性负相关,故选:D考点:变量线性相关问题8、A【解析】根据函数的单调性进行求解即可.【详解】因为在定义域上是减函数,所以由,故选:A9、D【解析】由“左加右减上加下减”的原则可确定函数到的路线,进行平移变换,推出结果【详解】解:将函数向右平移个单位,即可得到的图象,即的图象;故选:【点睛】本题主要考查三角函数的平移.三角函数的平移原则为“左加右减上加下减”.注意的系数,属于基础题10、D【解析】根据三角函数定义得到,计算得到答案.【详解】故选:【点睛】本题考查了三角函数定义,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、或或【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.12、①.②.【解析】①代入,由函数的定义计算可得答案;②分别计算时,时,时,时,时,时,时,的值,建立不等式,求解即可【详解】解:①∵,∴②当时,;当时,;当时,;当时,;当时,;当时,;当时,又对任意都成立,即恒成立,∴,∴,∴实数m的取值范围是故答案为:;.【点睛】关键点睛:本题考查函数的新定义,关键在于理解函数的定义,分段求值,建立不等式求解.13、(1)(3)【解析】根据二分法所求零点的特点,结合图象可确定结果.【详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)14、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:15、##【解析】先由已知条件求出的值,再由可求出的值【详解】因幂函数过点,所以,得,所以,因为,所以,得,故答案为:16、①.②.【解析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【点睛】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数(2)【解析】(1)由奇偶性的定义判断(2)由对数函数性质求解【小问1详解】,则,的定义域为,,故是奇函数【小问2详解】,当时,,故,即在的值域为18、⑴⑵【解析】(1)利用圆的几何性质布列方程组得到圆的方程;(2)设出点A,B的坐标,联立直线与圆的方程,消去y,确定关于x的一元二次方程,已知的垂直关系,确定x1x2+y1y2=0,利用韦达定理求得a试题解析:⑴因为圆的圆心在线段的直平分线上,所以可设圆的圆心为,则有解得则圆C的半径为所以圆C的方程为⑵设,其坐标满足方程组:消去,得到方程由根与系数的关系可得,由于可得,又所以由①,②得,满足故19、(Ⅰ)(Ⅱ)2,-1【解析】(Ⅰ)因为f=4=3故fx最小正周期为(Ⅱ)因为-π6≤x≤于是,当2x+π6=π2,即x=当2x+π6=-π6,即点睛:本题主要考查了两角和的正弦公式,辅助角公式,正弦函数的性质,熟练掌握公式是解答本题的关键.20、(1);(2)见解析.【解析】由题意可得,,解不等式可求;由已知可得,结合a的范围,进行分类讨论求解x的范围【详解】(1)由题意可得,,解可得,,函数的定义域为,由,可得,时,,解可得,,时,,解可得,【点睛】本题主要考查了对数函数的定义域及利用对数函数单调性求解对数不等式,体现了分类讨论思想的应用,属于基础试题21、(1)(2),【解析】(1)根据三角函数的图象和性质,求出和的值即可,(2)根据函数图象变换关系,求出以及的解析式,根据函数零点性质建立方程进行讨论求解即可【小问1详解】解:①是偶函数;②,是的图象在轴右侧的第一个对称中心;③相邻两条对称轴之间距离为若选择①②,由①是偶函数,即,由②,是的图象在轴右侧的第一个对称中心;则,得,即选择①③:由①是偶函数,即,由③知:相邻两条对称轴之间距离为,即,则,则,则若选②③:③知:相邻两条对称轴之间距离为,即,则,则,则,由②,是的图象在轴右侧的第一个对称中心;,得,则,综上【小问2详解】解:依题意,将函数的图象向右平移个单位,得,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍得到,可得,所以,当时,,则在内的零点个数为偶数个,在内恰有2021个零点,为奇数个零点,故,令,可得,令,,则,△,则关于的二次方程必有两个不等的实根,,,且,则,异号,①当,且时,则方程和在区间,均有偶数个根,从而在区间,有偶数个根,不符合题意;②当,且时,则方程在区间有偶数个根,无解,从而方程在有偶数个根,不合题意同理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论