2025届湖南省校级联考高一数学第一学期期末复习检测试题含解析_第1页
2025届湖南省校级联考高一数学第一学期期末复习检测试题含解析_第2页
2025届湖南省校级联考高一数学第一学期期末复习检测试题含解析_第3页
2025届湖南省校级联考高一数学第一学期期末复习检测试题含解析_第4页
2025届湖南省校级联考高一数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省校级联考高一数学第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,若关于的方程有四个不同的解,,,,且,则的取值范围是()A. B.C. D.2.在一段时间内,若甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,且甲乙两人各自行动.则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.48 B.0.32C.0.92 D.0.843.已知条件,条件,则p是q的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a5.已知,则的值为()A.-4 B.4C.-8 D.86.若函数在区间上单调递减,则实数满足的条件是A. B.C. D.7.函数y=的单调增区间为A.(-,) B.(,+)C.(-1,] D.[,4)8.已知全集U={0,1,2}且={2},则集合A的真子集共有A.3个 B.4个C.5个 D.6个9.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A. B.C. D.10.的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算:___________.12.设是R上的奇函数,且当时,,则__________13.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为____14.将函数的图象向左平移个单位长度得到函数的图象,若使得,且的最小值为,则_________.15.函数的定义域为_____________16.已知若,则().三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求值:;(2)已知,,试用表示.18.记函数的定义域为集合,函数的定义域为集合(Ⅰ)求集合;(Ⅱ)若,求实数的取值范围19.某网站为调查某项业务的受众年龄,从订购该项业务的人群中随机选出200人,并将这200人的年龄按照,,,,分成5组,得到的频率分布直方图如图所示:(1)求的值和样本的平均数(同一组数据用该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求这2人中恰有1人年龄在中的概率20.已知函数.(1)求的最小正周期以及对称轴方程;(2)设函数,求在上的值域.21.已知的部分图象如图.(1)求函数的解析式;(2)求函数在上的单调增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据图象可得:,,,.,则.令,,求函数的值域,即可得出结果.【详解】画出函数的大致图象如下:根据图象可得:若方程有四个不同的解,,,,且,则,,,.,,,则.令,,而函数在单调递增,所以,则.故选:A.【点睛】本题考查函数的图象与性质,考查函数与方程思想、转化与化归思想、数形结合思想,考查运算求解能力,求解时注意借助图象分析问题,属于中档题.2、C【解析】根据题意求得甲乙都不去参观博物馆的概率,结合对立事件的概率计算公式,即可求解.【详解】由甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,可得甲乙都不去参观博物馆的概率为,所以甲乙两人至少有一个去参观博物馆的概率是.故选:C.3、B【解析】利用充分条件和必要条件的定义进行判断【详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B4、C【解析】分别求出的范围即可比较.【详解】,,,,,.故选:C.5、C【解析】由已知条件,结合同角正余弦的三角关系可得,再将目标式由切化弦即可求值.【详解】由题意知:,即,∴,而.故选:C.【点睛】本题考查了同角三角函数关系,应用了以及切弦互化求值,属于基础题.6、A【解析】因为函数在区间上单调递减,所以时,恒成立,即,故选A.7、C【解析】令,,()在为增函数,在上是增函数,在上是减函数;根据复合函数单调性判断方法“同增异减”可知,函数y=的单调增区间为选C.【点睛】有关复合函数的单调性要求根据“同增异减”的法则去判断,但在研究函数的单调性时,务必要注意函数的定义域,特别是含参数的函数单调性问题,注意对参数进行讨论,指、对数问题针对底数a讨论两种情况,分0<a<1和a>1两种情况,既要保证函数的单调性,又要保证真数大于零.8、A【解析】,所以集合A的真子集的个数为个,故选A.考点:子集9、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A10、B【解析】.故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】直接利用对数的运算法则以及指数幂的运算法则化简即可.【详解】.故答案为:7.12、【解析】由函数的性质得,代入当时的解析式求出的值,即可得解.【详解】当时,,,是上的奇函数,故答案为:13、【解析】解直角三角形AOC,求出半径AO,代入弧长公式求出弧长的值解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1Rt△AOC中,r=AO==,从而弧长为α×r=2×=,故答案为考点:弧长公式14、【解析】根据三角函数的图形变换,求得,根据,不妨设,求得,,得到则,根据题意得到,即可求解.【详解】将函数的图象向左平移个单位长度,可得,又由,不妨设,由,解得,即,又由,解得,即则,因为的最小值为,可得,解得或,因为,所以.故答案为:15、【解析】令解得答案即可.【详解】令.故答案为:.16、【解析】利用平面向量平行的坐标表示进行求解.【详解】因为,所以,即;故答案:.【点睛】本题主要考查平面向量平行的坐标表示,两向量平行坐标分量对应成比例,侧重考查数学运算的核心素养.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先将小数转化为分数并约简,然后各式化成指数幂的形式,再利用指数运算法则即可化简求值.(2)先利用对数的换底公式,以及相关的运算公式将转化为以表示的式子,然后换成m,n即可.【详解】解:(1)原式(2)原式【点睛】主要考查指数幂运算公式以及对数的运算公式的应用,属于基础题.18、(Ⅰ);(Ⅱ)【解析】(1)根据根式有意义的条件,并结合指数函数的性质解不等式得到集合A;(2)先求解集合,由得到A是B的子集,根据集合包含关系列出关于a的不等式,求得a的取值范围【详解】(Ⅰ)由已知得:(Ⅱ)由∵,∴或∵,∴,∴19、(1),平均数为岁(2)【解析】(1)根据频率之和等于得出的值,再由频率分布直方图中的数据计算平均数;(2)根据分层抽样确定第1,2组中抽取的人数,再由列举法结合古典概型的概率公式得出概率.【小问1详解】由,得平均数为岁.【小问2详解】第1,2组的人数分别为人,人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为,,,,从5人中随机抽取2人,样本空间可记为,,,,,,,,,,用表示“2人中恰有1人年龄在”,则,,,,,,包含的样本点个数是6.所以2人中恰有1人年龄在中的概率20、(1)最小正同期为,对称轴方程为(2)【解析】(1)利用三角函数的恒等变换公式将化为只含有一个三角函数形式,即可求得结果;(2)将展开化简,然后采用整体处理的方法,求得答案.【小问1详解】,所以的最小正同期为.令

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论