2025届安徽省定远县第二中学数学高三第一学期期末学业质量监测试题含解析_第1页
2025届安徽省定远县第二中学数学高三第一学期期末学业质量监测试题含解析_第2页
2025届安徽省定远县第二中学数学高三第一学期期末学业质量监测试题含解析_第3页
2025届安徽省定远县第二中学数学高三第一学期期末学业质量监测试题含解析_第4页
2025届安徽省定远县第二中学数学高三第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省定远县第二中学数学高三第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体2.已知等差数列的前项和为,若,,则数列的公差为()A. B. C. D.3.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A. B. C. D.4.在中,,,,点满足,则等于()A.10 B.9 C.8 D.75.函数满足对任意都有成立,且函数的图象关于点对称,,则的值为()A.0 B.2 C.4 D.16.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为()A. B. C. D.7.抛物线的焦点为,点是上一点,,则()A. B. C. D.8.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.49.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=()A.1 B. C.2 D.410.已知复数z满足(其中i为虚数单位),则复数z的虚部是()A. B.1 C. D.i11.已知函数,若不等式对任意的恒成立,则实数k的取值范围是()A. B. C. D.12.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点在双曲线的右支上,其左、右焦点分别为、,直线与以坐标原点为圆心、为半径的圆相切于点,线段的垂直平分线恰好过点,则该双曲线的渐近线的斜率为__________.14.已知各项均为正数的等比数列的前项积为,,(且),则__________.15.若实数x,y满足不等式组x+y-4≤0,2x-3y-8≤0,x≥1,则目标函数16.如图,直三棱柱中,,,,P是的中点,则三棱锥的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.18.(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.19.(12分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.20.(12分)设为抛物线的焦点,,为抛物线上的两个动点,为坐标原点.(Ⅰ)若点在线段上,求的最小值;(Ⅱ)当时,求点纵坐标的取值范围.21.(12分)已知函数,直线为曲线的切线(为自然对数的底数).(1)求实数的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围.22.(10分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据基本几何体的三视图确定.【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.2、D【解析】

根据等差数列公式直接计算得到答案.【详解】依题意,,故,故,故,故选:D.【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.3、A【解析】

求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,求出等式左边式子的范围,将等式右边代入,从而求解.【详解】解:由题意可得,焦点F(1,0),准线方程为x=−1,

过点P作PM垂直于准线,M为垂足,

由抛物线的定义可得|PF|=|PM|=x+1,

记∠KPF的平分线与轴交于

根据角平分线定理可得,,当时,,当时,,,综上:.故选:A.【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.4、D【解析】

利用已知条件,表示出向量,然后求解向量的数量积.【详解】在中,,,,点满足,可得则==【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.5、C【解析】

根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.6、C【解析】

设,求,作为的函数,其最小值是6,利用导数知识求的最小值.【详解】设,则,记,,易知是增函数,且的值域是,∴的唯一解,且时,,时,,即,由题意,而,,∴,解得,.∴.故选:C.【点睛】本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.7、B【解析】

根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.8、D【解析】可以是共4个,选D.9、C【解析】

设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.【详解】由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),∴y1+y2=p,又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,故选C.【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.10、A【解析】

由虚数单位i的运算性质可得,则答案可求.【详解】解:∵,∴,,则化为,∴z的虚部为.故选:A.【点睛】本题考查了虚数单位i的运算性质、复数的概念,属于基础题.11、A【解析】

先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详解】当时,,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.12、B【解析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】如图,是切点,是的中点,因为,所以,又,所以,,又,根据双曲线的定义,有,即,两边平方并化简得,所以,因此.14、【解析】

利用等比数列的性质求得,进而求得,再利用对数运算求得的值.【详解】由于,,所以,则,∴,,.故答案为:【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.15、12【解析】

画出约束条件的可行域,求出最优解,即可求解目标函数的最大值.【详解】根据约束条件画出可行域,如下图,由x+y-4=02x-3y-8=0,解得目标函数y=3x-z,当y=3x-z过点(4,0)时,z有最大值,且最大值为12.故答案为:12.【点睛】本题考查线性规划的简单应用,属于基础题.16、【解析】

证明平面,于是,利用三棱锥的体积公式即可求解.【详解】平面,平面,,又.平面,是的中点,.

故答案为:【点睛】本题考查了线面垂直的判定定理、三棱锥的体积公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)令,求出的范围,再由指数函数的单调性,即可求出结论;(2)对分类讨论,分别求出以及的最小值或范围,与的最小值建立方程关系,求出的值,进而求出的取值关系.【详解】(1)当时,,令,∵∴,而是增函数,∴,∴函数的值域是.(2)当时,则在上单调递减,在上单调递增,所以的最小值为,在上单调递增,最小值为,而的最小值为,所以这种情况不可能.当时,则在上单调递减且没有最小值,在上单调递增最小值为,所以的最小值为,解得(满足题意),所以,解得.所以实数的取值范围是.【点睛】本题考查复合函数的值域与分段函数的最值,熟练掌握二次函数图像和性质是解题的关键,属于中档题.18、(1)(2)证明见解析【解析】

(1)求导可得在上,在上,所以函数在时,取最小值,由函数只有一个零点,观察可知则有,即可求得结果.(2)由(1)可知为最小值,则构造函数(),求导借助基本不等式可判断为减函数,即可得,即则有,由已知可得,由,可知,因为时,为增函数,即可得证得结论.【详解】(1)().因为,所以,令得,,且,,在上;在上;所以函数在时,取最小值,当最小值为0时,函数只有一个零点,易得,所以,解得.(2)由(1)得,函数,设(),则,设(),则,,所以为减函数,所以,即,所以,即,又,所以,又当时,为增函数,所以,即.【点睛】本题考查借助导数研究函数的单调性及最值,考查学生分析问题的能力,及逻辑推理能力,难度困难.19、(1);(2)4【解析】

(1)分类讨论,求解x的范围,取并集,得到绝对值不等式的解集,即得解;(2)转化原不等式为:,利用均值不等式即得解.【详解】(1)当时不等式可化为当时,不等式可化为;当时,不等式可化为;综上不等式的解集为.(2)由(1)有,,,,即而当且仅当:,即,即时等号成立∴,综上实数最大值为4.【点睛】本题考查了绝对值不等式的求解与不等式的恒成立问题,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.20、(Ⅰ)(Ⅱ)【解析】

(1)由抛物线的性质,当轴时,最小;(2)设点,,分别代入抛物线方程和得到三个方程,消去,得到关于的一元二次方程,利用判别式即可求出的范围.【详解】解:(1)由抛物线的标准方程,,根据抛物线的性质,当轴时,最小,最小值为,即为4.(2)由题意,设点,,其中,.则,①,②因为,,,所以.③由①②③,得,由,且,得,解不等式,得点纵坐标的范围为.【点睛】本题主要考查抛物线的方程和性质和二次方程的解的问题,考查运算能力,此类问题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等,易错点是复杂式子的变形能力不足,导致错解.21、(1);(2).【解析】

试题分析:(1)先求导,然后利用导数等于求出切点的横坐标,代入两个曲线的方程,解方程组,可求得;(2)设与交点的横坐标为,利用导数求得,从而,然后利用求得的取值范围为.试题解析:(1)对求导得.设直线与曲线切于点,则,解得,所以的值为1.(2)记函数,下面考察函数的符号,对函数求导得.当时,恒成立.当时,,从而.∴在上恒成立,故在上单调递减.,∴,又曲线在上连续不间断,所以由函数的零点存在性定理及其单调性知唯一的,使.∴;,,∴,从而,∴,由函数为增函数,且曲线在上连续不断知在,上恒成立.①当时,在上恒成立,即在上恒成立,记,则,当变化时,变化情况列表如下:

3

0

极小值

∴,故“在上恒成立”只需,即.②当时,,当时,在上恒成立,综合①②知,当时,函数为增函数.故实数的取值范围是考点:函数导数与不等式.【方法点晴】函数导数问题中,和切线有关的题目非常多,我们只要把握住关键点:一个是切点,一个是斜率,切点即在原来函数图象上,也在切线上;斜率就是导数的值.根据这两点,列方程组,就能解决.本题第二问我们采用分层推进的策略,先求得的表达式,然后再求得的表达

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论