江西省新建一中2025届数学高二上期末复习检测模拟试题含解析_第1页
江西省新建一中2025届数学高二上期末复习检测模拟试题含解析_第2页
江西省新建一中2025届数学高二上期末复习检测模拟试题含解析_第3页
江西省新建一中2025届数学高二上期末复习检测模拟试题含解析_第4页
江西省新建一中2025届数学高二上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省新建一中2025届数学高二上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且平行于直线的直线的方程为()A. B.C. D.2.已知是椭圆右焦点,点在椭圆上,线段与圆相切于点,且,则椭圆的离心率等于()A. B.C. D.3.若双曲线一条渐近线被圆所截得的弦长为,则双曲线的离心率是()A. B.C. D.4.已知抛物线的方程为,则此抛物线的准线方程为()A. B.C. D.5.公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割,简称黄金数.离心率等于黄金数的倒数的双曲线称为黄金双曲线.若双曲线是黄金双曲线,则()A. B.C. D.6.已知“”的必要不充分条件是“或”,则实数的最小值为()A. B.C. D.7.已知抛物线的焦点为F,,点是抛物线上的动点,则当的值最小时,=()A.1 B.2C. D.48.已知全集,集合,,则()A. B.C. D.9.已知椭圆上一点到椭圆一个焦点的距离是,则点到另一个焦点的距离为()A.2 B.3C.4 D.510.过点的直线与圆相切,则直线的方程为()A.或 B.或C.或 D.或11.设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A. B.C. D.12.某中学的校友会为感谢学校的教育之恩,准备在学校修建一座四角攒尖的思源亭如图它的上半部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30°,侧棱长为米,则以下说法不正确()A.底面边长为6米 B.体积为立方米C.侧面积为平方米 D.侧棱与底面所成角的正弦值为二、填空题:本题共4小题,每小题5分,共20分。13.从双曲线上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.14.已知随机变量X服从正态分布,若,则______15.已知双曲线的右焦点为,过点作轴的垂线,在第一象限与双曲线及其渐近线分别交于,两点.若,则双曲线的离心率为___________.16.一个六棱锥的体积为,其底面是边长为的正六边形,侧棱长都相等,则该六棱锥的侧面积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列公差不为0,且成等比数列.(1)求数列的通项公式及其前n项和;(2)记,求数列的前n项和.18.(12分)已知椭圆,其焦点为,,离心率为,若点满足.(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点,的重心满足:,求实数的取值范围.19.(12分)已知双曲线,抛物线的焦点与双曲线的一个焦点相同,点为抛物线上一点.(1)求双曲线的焦点坐标;(2)若点到抛物线的焦点的距离是5,求的值.20.(12分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的解析式及单调递减区间;(2)若函数无零点,求的取值范围21.(12分)自疫情爆发以来,由于党和国家对抗疫工作高度重视,在人民群众的不懈努力下,我国抗疫工作取得阶段性成功,国家经济很快得到复苏.在餐饮业恢复营业后,某快餐店统计了近天内每日接待的顾客人数,将前天的数据进行整理得到频率分布表和频率分布直方图.组别分组频数频率第组第组第组第组第组合计(1)求、、的值,并估计该快餐店在前天内每日接待的顾客人数的平均数;(2)已知该快餐店在前50天内每日接待的顾客人数的方差为,在后天内每日接待的顾客人数的平均数为、方差为,估计这家快餐店这天内每日接待的顾客人数的平均数和方差.()22.(10分)在中,角的对边分别为,且.(1)求;(2)若,的面积为,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据平行设直线方程,代入点计算得到答案.【详解】设直线方程为,将点代入直线方程得到,解得.故直线方程为:.故选:B.2、A【解析】结合椭圆的定义、勾股定理列方程,化简求得,由此求得离心率.【详解】圆的圆心为,半径为.设左焦点为,连接,由于,所以,所以,所以,由于,所以,所以,,.故选:A3、A【解析】根据(为弦长,为圆半径,为圆心到直线的距离),求解出的关系式,结合求解出离心率的值.【详解】取的一条渐近线,因为(为弦长,为圆半径,为圆心到直线的距离),其中,所以,所以,所以,所以,所以,故选:A.【点睛】关键点点睛:解答本题的关键是利用几何法表示出圆的半径、圆心到直线的距离、半弦长之间的关系.4、A【解析】由抛物线的方程直接写出其准线方程即可.【详解】由抛物线的方程为,则其准线方程为:故选:A5、A【解析】根据黄金双曲线的定义直接列方程求解【详解】双曲线中的,所以离心率,因为双曲线是黄金双曲线,所以,两边平方得,解得或(舍去),故选:A6、A【解析】首先解不等式得到或,根据题意得到,再解不等式组即可.【详解】,解得或,因为“”的必要不充分条件是“或”,所以.实数的最小值为.故选:A7、B【解析】根据抛物线定义,转化,要使有最小值,只需最大,即直线与抛物线相切,联立直线方程与抛物线方程,求出斜率,然后求出点坐标,即可求解.【详解】由题知,抛物线的准线方程为,,过P作垂直于准线于,连接,由抛物线定义知.由正弦函数知,要使最小值,即最小,即最大,即直线斜率最大,即直线与抛物线相切.设所在的直线方程为:,联立抛物线方程:,整理得:则,解得即,解得,代入得或,再利用焦半径公式得故选:B.关键点睛:本题考查抛物线的性质,直线与抛物线的位置关系,解题的关键是要将取最小值转化为直线斜率最大,再转化为抛物线的切线,考查学生的转化思想与运算求解能力,属于中档题.8、A【解析】先求,然后求.【详解】,,.故选:A9、C【解析】根据椭圆的定义,结合题意,即可求得结果.【详解】设椭圆的两个焦点分别为,故可得,又到椭圆一个焦点的距离是,故点到另一个焦点的距离为.故选:.10、D【解析】根据斜率存在和不存在分类讨论,斜率存在时设直线方程,由圆心到直线距离等于半径求解【详解】圆心为,半径为2,斜率不存在时,直线满足题意,斜率存在时,设直线方程为,即,由,得,直线方程为,即故选:D11、C【解析】设,由,根据两点间的距离公式表示出,分类讨论求出的最大值,再构建齐次不等式,解出即可【详解】设,由,因为,,所以,因为,当,即时,,即,符合题意,由可得,即;当,即时,,即,化简得,,显然该不等式不成立故选:C【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值12、D【解析】连接底面正方形的对角线交于点,连接,则为该正四棱锥的高,即平面,取的中点,连接,则的大小为侧面与底面所成,设正方形的边长为,求出该正四棱锥的底面边长,斜高和高,然后对选项进行逐一判断即可.【详解】连接底面正方形的对角线交于点,连接则为该正四棱锥的高,即平面取的中点,连接,由正四棱锥的性质,可得由分别为的中点,所以,则所以为二面角的平面角,由条件可得设正方形的边长为,则,又则,解得故选项A正确.所以,则该正四棱锥的体积为,故选项B正确.该正四棱锥的侧面积为,故选项C正确.由题意为侧棱与底面所成角,则,故选项D不正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】根据题意,设,进而根据中点坐标公式及点P已知双曲线上求得答案.【详解】由题意,设,则,则,即,因为,则,即的轨迹方程为.14、##25【解析】根据正态分布曲线的对称性即可求得结果.【详解】,,又,,.故答案为:.15、【解析】按题意求得,两点坐标,以代数式表达出条件,即可得到关于的关系式,进而解得双曲线的离心率.【详解】双曲线的右焦点为,其渐近线为,垂线方程为,则,,,由,得,即即,则,离心率故答案为:16、【解析】判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积∵一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则棱锥斜高为该六棱锥的侧面积为考点:棱柱、棱锥、棱台的体积三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据分式的合分比性质以及等差数列的性质即可求出;(2)根据裂项相消法即可求出【小问1详解】由题意:,即,又∵,∴,∴,∴,.【小问2详解】因为,∴.18、(1)(2)【解析】(1)运用椭圆的离心率公式,结合椭圆的定义可得在椭圆上,代入椭圆方程,求出,,即可求椭圆的方程;(2)设出直线方程,联立直线和椭圆方程,利用根与系数之间的关系、以及向量数量积的坐标表示进行求解即可.【小问1详解】依题意得,点,满足,可得在椭圆上,可得:,且,解得,,所以椭圆的方程为;【小问2详解】设,,,,,,当时,,此时A,B关于y轴对称,则重心为,由得:,则,此时与椭圆不会有两交点,故不合题意,故;联立与椭圆方程,可得,可得,化为,,,①,设的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,则,,令,则,可得,,,.【点睛】本题主要考查椭圆的方程以及直线和椭圆的位置关系的应用,利用消元法转化为一元二次方程形式是解决本题的关键.19、(1);(2).【解析】(1)根据双曲线的方程求出即得双曲线的焦点坐标;(2)先求出的值,再解方程得解.【详解】(1)因为双曲线的方程为,所以.所以.所以.所以双曲线的焦点坐标分别为.(2)因为抛物线的焦点与双曲线的一个焦点相同,所以抛物线的焦点坐标是(2,0),所以.因为点为抛物线上一点,所以点到抛物线的焦点的距离等于点到抛物线的准线的距离.因为点到拋物线的焦点的距离是5,即,所以.【点睛】本题主要考查双曲线的焦点坐标的求法,考查抛物线的定义和几何性质,意在考查学生对这些知识的理解掌握水平.20、(1)单调减区间为和;(2)的取值范围为:或【解析】(1)先求出函数的导数,求得切线的斜率,由两直线垂直的条件,可得,求得的解析式,可得导数,令导数小于0,可得减区间;(2)先求得,要使函数无零点,即要在内无解,亦即要在内无解.构造函数,对其求导,然后对进行分类讨论,运用单调性和函数零点存在性定理,即可得到的取值范围.【详解】(1),又由题意有:,故.此时,,由或,所以函数的单调减区间为和.(2),且定义域为,要函数无零点,即要在内无解,亦即要在内无解.构造函数.①当时,在内恒成立,所以函数在内单调递减,在内也单调递减.又,所以在内无零点,在内也无零点,故满足条件;②当时,⑴若,则函数在内单调递减,在内也单调递减,在内单调递增.又,所以在内无零点;易知,而,故在内有一个零点,所以不满足条件;⑵若,则函数在内单调递减,在内单调递增.又,所以时,恒成立,故无零点,满足条件;⑶若,则函数在内单调递减,在内单调递增,在内也单调递增.又,所以在及内均无零点.又易知,而,又易证当时,,所以函数在内有一零点,故不满足条件.综上可得:的取值范围为:或.【点睛】本题主要考查导数的几何意义、应用导数研究函数的零点问题、其中分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题,解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等21、(1),,,平均数为;(2)平均数为,方差为.【解析】(1)计算出第组的频数,可求得的值,利用频数、频率和总数的关系可求出的值,求出第组的频率,除以组距可得的值,利用平均数公式可求得该快餐店在前天内每日接待的顾客人数的平均数;(2)设前天接待的顾客人数分别为、、、,后天接待的顾客人数分别为、、、,利用平均数公式和方差公式可求得结果.【小问1详解】解:由表可知第组的频数为,所以,,,第组的频率为,,前天内每日接待的顾客人数的平均数为:.【小问2详解】解:设前天接待的顾客人数分别为、、、,后天接待的顾客人数分别为、、、,则由(1)知前天的平均数,方差,后天的平均数,方差,故这天的平均数为,,同理,这天的方差,由以上三式可得.22、(1);(2).【解析】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论