版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页山东省德州市临邑县2024-2025学年数学九年级第一学期开学学业水平测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,矩形的面积为,反比例函数的图象过点,则的值为()A. B. C. D.2、(4分)如图,菱形ABCD中,对角线AC、BD相交于O,已知BD=6,AC=8,则菱形ABCD的周长为()A.40 B.20 C.10 D.53、(4分)甲、乙两班分别由10名选手参加健美比赛,两班参赛选手身高的方差分别是S甲2=1.5,S乙2=2.5,则下列说法正确的是()A.甲班选手比乙班选手的身高整齐 B.乙班选手比甲班选手的身高整齐C.甲、乙两班选手的身高一样整齐 D.无法确定哪班选手的身高整齐4、(4分)点在第象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限5、(4分)一次函数y1=kx+b与y2=x+a图象如图:则下列结论①k<0;②a>0;③不等式x+a<kx+b的解集是x<3;④a−A.1个 B.2个 C.3个 D.4个6、(4分)一次函数y=kx+b(k<0,b>0)的图象可能是(
)A.
B.
C.
D.7、(4分)如图所示,一场台风过后,垂直于地面的一棵树在距地面1米处折断,树尖B
恰好碰到地面,经测量AB=2,则树高为()米.A.1+ B.1+ C.2-1 D.38、(4分)若将(a、b均为正数)中的字母a、b的值分别扩大为原来的3倍,则分式的值()A.扩大为原来的3倍 B.缩小为原来的C.不变 D.缩小为原来的二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)分解因式:ab﹣b2=_____.10、(4分)如果关于x的方程有实数根,则m的取值范围是_______________.11、(4分)关于的一元二次方程有一个解是,则__________.12、(4分)已知Rt△ABC,∠ABC=90°,小明按如下步骤作图,①以A为圆心,BC长为半径作弧,以C为圆心,AB长为半径作弧,两弧相交于点D;②连接DA,DC,则四边形ABCD为___________.13、(4分)一次函数y=-3x+a的图像与两坐标轴所围成的三角形面积是6,则a的值为_________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系中,一次函数的图象与正比例函数的图象都经过点.(1)求一次函数和正比例函数的解析式;(2)若点是线段上一点,且在第一象限内,连接,设的面积为,求面积关于的函数解析式.15、(8分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是甲乙两车离A地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离A地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)若它们出发第5小时时,离各自出发地的距离相等,求乙车离A地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.16、(8分)化简或求值(1)(1+)÷(2)1﹣÷,其中a=﹣,b=1.17、(10分)如图,在平行四边形OABC中,已知点A、C两点的坐标为A(,),C(2,0).(1)求点B的坐标.(2)将平行四边形OABC向左平移个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.(3)求平行四边形OABC的面积.18、(10分)已知直线l为x+y=8,点P(x,y)在l上且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数均是8.5环,方差分别是:,,则射击成绩较稳定的是______(填“甲”或“乙”).20、(4分)已知一个直角三角形的两条直角边的长分别为6cm、8cm,则它的斜边的中线长________cm.21、(4分)如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.22、(4分)顺次连接等腰梯形各边中点所得的四边形是_____.23、(4分)如图,x轴正半轴上,顶点D在y轴正半轴上,反比例函数y=(x>0)的图象与正比例函数y=x的图象交于点A.BC边经过点A,CD边与反比例函数图象交于点E,四边形OACE的面积为6.则点A的坐标为_____;二、解答题(本大题共3个小题,共30分)24、(8分)如图,在矩形ABCD中AD=12,AB=9,E为AD的中点,G是DC上一点,连接BE,BG,GE,并延长GE交BA的延长线于点F,GC=5(1)求BG的长度;(2)求证:是直角三角形(3)求证:25、(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.(1)求直线y=kx+b(k≠0)的表达式;(2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.26、(12分)一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
由于点A是反比例函数上一点,矩形ABOC的面积,再结合图象经过第二象限,则k的值可求出.【详解】由题意得:,又双曲线位于第二象限,则,
所以B选项是正确的.本题主要考查反比例函数y=kx中k几何意义,这里体现了数形结合的数形,关键在于理解k的几何意义.2、B【解析】
根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【详解】解:菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为1.故选:B.本题考查了菱形的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理计算AB的长是解题的关键.3、A【解析】
∵=1.5,=2.5,∴<,则甲班选手比乙班选手身高更整齐,故选A.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、A【解析】
根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点在第一象限.故选A.本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.5、C【解析】
根据一次函数的性质对①②进行判断;根据一次函数与一元一次不等式的关系,利用两函数图象的位置对③进行判断,联立方程解答即可.【详解】∵一次函数y1=kx+b的图象经过第二、四象限,∴k<0,所以①正确;∵一次函数y2=x+a的图象与y轴的交点在x轴下方,∴a<0,所以②错误;∵x<3时,一次函数y1=kx+b的图象都在函数y2=x+a的图象下方,∴不等式kx+b<x+a的解集为x<3,所以③正确。∵a=y−x,b=y−kx,∴a−b=3k−3,正确;故选C本题考查一次函数与一元一次不等式,熟练掌握运算法则是解题关键.6、C【解析】
根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,
∴一次函数y=kx+b的图象经过第二、四象限.
又∵b>0时,
∴一次函数y=kx+b的图象与y轴交与正半轴.
综上所述,该一次函数图象经过第一象限.故答案为:C.考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7、A【解析】
根据题意利用勾股定理得出BC的长,进而得出答案.【详解】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴树高为:(1+)m.故选:A.此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.8、D【解析】
根据分式的基本性质,可得答案【详解】将分式(a,b均为正数)中a,b的值分别扩大为原来的3倍,则分式的值缩小为原来的故选D.本题考查分式的基本性质,掌握运算法则是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、b(a﹣b)【解析】根据提公因式法进行分解即可,ab﹣b2=b(a﹣b),故答案为:b(a﹣b).10、【解析】分析:根据方程的系数结合根的判别式,即可得出△=16-8m≥0,解之即可得出m的取值范围.详解:∵关于x的方程有实数根,
∴△=(-4)²-4×2m=16-8m≥0,
解得:m≤2
故答案为:m≤2点睛:本题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.11、-3【解析】∵方程的一个解为,∴将代入原方程,得:,则,∵是关于的一元二次方程.∴,即,∴.12、矩形【解析】
直接利用小明的作图方法得出四边形ABCD是平行四边形,进而利用矩形的判定方法得出答案.【详解】解:根据小明的作图方法可知:AD=BC,AB=DC,∠B=90°,∵AD=BC,AB=DC,
∴四边形ABCD是平行四边形,
∵∠B=90°,
∴平行四边形ABCD是矩形.
故答案为:矩形.本题主要考查了复杂作图,正确掌握平行四边形的判定方法和矩形的判定方法是解题关键.13、±6【解析】
先根据坐标轴上点的坐标特征得到直线与坐标轴的交点坐标,再根据三角形面积公式得,然后解关于a的绝对值方程即可.【详解】解:当y=0时,y=-3x+a=0,解得x=,则直线与x轴的交点坐标为(,0);当x=0时,y=-3x+a=a,则直线与y轴的交点坐标为(0,a);所以,解得:a=±6.故选答案为:±6.本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(本大题共5个小题,共48分)14、(1)y=﹣x+4,;(2)S=2x(0<x≤3).【解析】
(1)把B(3,1)分别代入y=﹣x+b和y=kx即可得到结论;(2)根据三角形的面积公式即可得到结论.【详解】(1)把B(3,1)分别代入y=﹣x+b和y=kx得1=﹣3+b,1=3k,解得:b=4,k,∴y=﹣x+4,yx;(2)∵点P(x,y)是线段AB上一点,∴S•xP2x(0<x≤3).本题考查了两直线相交或平行,三角形面积的求法,待定系数法确定函数关系式,正确的理解题意是解题的关键.15、(1);(2)140千米,y乙=300﹣28x,(0≤x≤);(3)或小时【解析】
(1)由图知,该函数关系在不同的时间里表现出不同的关系,需分段表达,可根据待定系数法列方程,求函数关系式.(2)根据题意求出乙车速度,列出y乙与行驶时间x的函数关系式;(3)联立方程分段求出相遇时间.【详解】(1)由图象可知,甲车由A到B的速度为300÷3=100千米/时,由B到A的速度为千米/时,则当0≤x≤3时:y甲=100x,当3≤x≤时:y甲=300﹣80(x﹣3)=﹣80x+540,∴y甲=,(2)当x=5时,y甲=﹣80×5+540=140(千米),则第5小时时,甲距离A140千米,则乙距离B140千米,则乙的速度为140÷5=28千米/时,则y乙=300﹣28x(0≤x≤),(3)当0≤x≤3时,100x=300﹣28x,解得x=.当3≤x≤时,300﹣28x=﹣80x+540,x=.∴甲、乙两车相遇的时间为或小时,本题考查了一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答本题.16、(1)、;(2)、2.【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果;原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,将a与b的值代入计算即可求出值.【详解】解:(1)原式==(2)原式=1﹣•=1-=当a=﹣,b=1时,原式=2.考点:分式的化简求值;分式的混合运算17、(1)点B坐标是(3,);(2)A′(O,)、B′(2,)、C′(,0),O′(-,0);(3)6.【解析】分析:(1)根据平行四边形的性质AB=OC=2,由此即可解决问题.
(2)根据向左平移纵坐标不变,横坐标减去即可.
(3)根据平行四边形的面积公式计算即可.详解:(1)点B坐标是(3,);(2)向左平移个单位长度后,各点的纵坐标不变,横坐标都减少,所以A′(O,)、B′(2,)、C′(,0),O′(-,0).(3)平行四边形的面积为2·=2()2=2×3=6.点睛:本题考查四边形综合题、坐标与点的位置关系、平行四边形的性质等知识,解题的关键是熟练掌握平行四边形的性质,记住平行四边形的面积等于底乘高,属于中考常考题型.18、(1)、y=24﹣3x(0<x<8);(2)、P(5,3);(3)、(6.4,1.6).【解析】试题分析:(1)根据三角形的面积公式即可直接求解;(2)把S=9代入,解方程即可求解;(3)点O关于l的对称点B,AB与直线x+y=8的交点就是所求.试题解析:(1)如图所示:∵点P(x,y)在直线x+y=8上,∴y=8﹣x,∵点A的坐标为(6,0),∴S=3(8﹣x)=24﹣3x,(0<x<8);(2)当24﹣3x=9时,x=5,即P的坐标为(5,3).(3)点O关于l的对称点B的坐标为(8,8),设直线AB的解析式为y=kx+b,由8k+b=8,6k+b=0,解得k=4,b=﹣24,故直线AB的解析式为y=4x﹣24,由y=4x﹣24,x+y=8解得,x=6.4,y=1.6,点M的坐标为(6.4,1.6).考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.一、填空题(本大题共5个小题,每小题4分,共20分)19、甲【解析】
根据方差的性质即可求解.【详解】∵<,∴成绩较稳定的是甲此题主要考查利用方差判断稳定性,解题的关键是熟知方差的性质.20、1【解析】
绘制符合题意的直角三角形,并运用勾股定理,求出其斜边的长度,再根据直角三角形斜边上的中线长度等于斜边长度的一半求解.【详解】解:如下图所示,假设符合题意,其中BC=6cm,AC=8cm,∠C=90°,点D为AB的中点.由勾股定理可得:==10(cm)又∵点D为AB的中点∴CD==1(cm)故答案为:1.本题考查了勾股定理(直角三角形两条直角边的平方和等于斜边的平方),直角三角形斜边上的中线长度是斜边长度的一半,其中后者是解本题的关键.21、1【解析】
根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道S阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA是等腰三角形,∠A1BA=30°,∴S△A1BA=×6×3=1,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=1.故答案为1.本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.22、菱形【解析】
解:顺次连接等腰梯形各边中点所得的四边形是菱形,理由为:
已知:等腰梯形ABCD,E、F、G、H分别为AD、AB、BC、CD的中点,
求证:四边形EFGH为菱形.
证明:连接AC,BD,
∵四边形ABCD为等腰梯形,
∴AC=BD,
∵E、H分别为AD、CD的中点,
∴EH为△ADC的中位线,
∴EH=AC,EH∥AC,
同理FG=AC,FG∥AC,
∴EH=FG,EH∥FG,
∴四边形EFGH为平行四边形,
同理EF为△ABD的中位线,
∴EF=BD,又EH=AC,且BD=AC,∴EF=EH,则四边形EFGH为菱形.
故答案为菱形.23、(3,2)【解析】
把反比例函数与正比例函数的解析式组成方程组即可求出A点坐标;【详解】∵点A是反比例函数y=(x>0)的图象与正比例函数y=x的图象的交点,∴,解得(舍去)或∴A(3,2);故答案为:(3,2)此题考查反比例函数,解题关键在于把反比例函数与正比例函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度宅基地使用权转让与乡村建设合作合同4篇
- 课题申报参考:京杭大运河(江南段)文化廊道范围识别与整体性空间构建研究
- 课题申报参考:健全平台经济常态化监管研究
- TPM推进的步骤及开展方法
- 二零二五版汽车保险代理股份买卖及理赔服务合同3篇
- 二零二五版矿山资源转让与矿山生态环境恢复合同3篇
- 2025年度个人收入证明模板设计与制作合同4篇
- 二零二五版高标准预制混凝土构件施工合作协议3篇
- 二零二五年度建筑原材料供应商赊销合同范本4篇
- 二零二五年度厕所改造项目资金管理合同3篇
- 室上性心动过速-医学课件
- 建设工程法规及相关知识试题附答案
- 中小学心理健康教育课程标准
- 四年级上册脱式计算400题及答案
- 新课标人教版小学数学六年级下册集体备课教学案全册表格式
- 人教精通版三年级英语上册各单元知识点汇总
- 人口分布 高一地理下学期人教版 必修第二册
- 教案:第三章 公共管理职能(《公共管理学》课程)
- 诺和关怀俱乐部对外介绍
- 玩转数和形课件
- 保定市县级地图PPT可编辑矢量行政区划(河北省)
评论
0/150
提交评论