山东省博兴县2025届数学九上开学综合测试模拟试题【含答案】_第1页
山东省博兴县2025届数学九上开学综合测试模拟试题【含答案】_第2页
山东省博兴县2025届数学九上开学综合测试模拟试题【含答案】_第3页
山东省博兴县2025届数学九上开学综合测试模拟试题【含答案】_第4页
山东省博兴县2025届数学九上开学综合测试模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页山东省博兴县2025届数学九上开学综合测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)近几年,手机支付用户规模增长迅速,据统计2015年手机支付用户约为3.58亿人,连续两年增长后,2017年手机支付用户达到约5.27亿人.如果设这两年手机支付用户的年平均增长率为x,则根据题意可以列出方程为()A. B. C. D.2、(4分)某工厂计划用两年时间使产值增加到目前的4倍,并且使第二年增长的百分数是第一年增长百分数的2倍,设第一年增长的百分数为x,则可列方程得()A.(1+x)2=4 B.x(1+2x+4x)=4C.2x(1+x)=4 D.(1+x)(1+2x)=43、(4分)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积(单位:平方米)与工作时间(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为A.40平方米 B.50平方米 C.80平方米 D.100平方米4、(4分)2022年将在北京张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了滑雪选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:队员1队员2队员3队员4甲组176177175176乙组178175177174设两队队员身高的平均数依次为,,方差依次为,,则下列关系中完全正确的是().A. B.C. D.5、(4分)下列图形中,既是轴对称又是中心对称图形的是()A.正方形 B.等边三角形 C.平行四边形 D.正五边形6、(4分)下列多项式中能用完全平方公式分解的是A. B. C. D.7、(4分)已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A. B.3 C. D.无法确定8、(4分)如图,把一个边长为1的正方形放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数为().A. B.1.5 C. D.1.7二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)y=(2m﹣1)x3m﹣2+3是一次函数,则m的值是_____.10、(4分)直线与直线在同一平面直角坐标系中如图所示,则关于x的不等式的解为________________.11、(4分)一组数据:3,5,9,12,6的极差是_________.12、(4分)如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)13、(4分)一种什锦糖由价格为12元/千克,18元/千克的两种糖果混合而成,两种糖果的比例是2:1,则什锦糖的每千克的价格为_____________三、解答题(本大题共5个小题,共48分)14、(12分)如图,每个小正方形的边长均为1,求证:△ABC是直角三角形.15、(8分)(定义学习)定义:如果四边形有一组对角为直角,那么我们称这样的四边形为“对直四边形”(判断尝试)在①梯形;②矩形:③菱形中,是“对直四边形”的是哪一个.(填序号)(操作探究)在菱形ABCD中,于点E,请在边AD和CD上各找一点F,使得以点A、E、C、F组成的四边形为“对直四边形”,画出示意图,并直接写出EF的长,(实践应用)某加工厂有一批四边形板材,形状如图所示,若AB=3米,AD=1米,.现根据客户要求,需将每张四边形板材进一步分割成两个等腰三角形板材和一个“对直四边形"板材,且这两个等腰三角形的腰长相等,要求材料充分利用无剩余.求分割后得到的等腰三角形的腰长,16、(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.17、(10分)如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.18、(10分)如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)使代数式有意义的的取值范围是__________.20、(4分)若分式的值为正数,则x的取值范围_____.21、(4分)已知点,关于x轴对称,则________.22、(4分)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=_____.23、(4分)如图,延长正方形的边到,使,则________度.二、解答题(本大题共3个小题,共30分)24、(8分)计算:(1);(2).25、(10分)已知函数,(1)当m取何值时抛物线开口向上?(2)当m为何值时函数图像与x轴有两个交点?(3)当m为何值时函数图像与x轴只有一个交点?26、(12分)解方程:

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

如果设这两年手机支付用户的年平均增长率为,那么2016年手机支付用户约为亿人,2017年手机支付用户约为亿人,而2017年手机支付用户达到约亿人,根据2017年手机支付用户的人数不变,列出方程.【详解】设这两年手机支付用户的年平均增长率为,依题意得:.故选:.本题考查的是由实际问题抽象出一元二次方程-平均增长率问题.解决这类问题所用的等量关系一般是:.2、D【解析】

设第一年增长的百分数为x,则第二年增长的百分数为2x,根据“计划用两年时间使产值增加到目前的1倍”列出方程即可.【详解】解:设第一年增长的百分数为x,则第二年增长的百分数为2x,根据题意,得(1+x)(1+2x)=1.故选:D.此题主要考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3、B【解析】试题分析:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选B.考点:函数的图象.4、D【解析】首先求出平均数再进行吧比较,然后再根据法方差的公式计算.=,=,=,=所以=,<.故选A.“点睛”此题主要考查了平均数和方差的求法,正确记忆方差公式是解决问题的关键.5、A【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】A、正方形既是轴对称图形,也是中心对称图形,故选A正确;B、等边三角形是轴对称图形,不是中心对称图形,故选项B错误;C、平行四边形不是轴对称图形,是中心对称图形,故C错误;D、正五边形是轴对称图形,不是中心对称图形,故选项D错误.故选A.本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6、B【解析】

根据完全平方公式的结构特征判断即可.【详解】选项A、C、D都不能够用完全平方公式分解,选项B能用完全平方公式分解,即.故选B.本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7、C【解析】

根据一次函数的定义可得k-2≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±2,因为k-2≠0,所以k≠2,即k=-2.故选:C.本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.8、A【解析】

根据勾股定理求出OA的长,根据实数与数轴的知识解答.【详解】,∴OA=,则点A对应的数是,故选A.本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

根据一次函数的定义可得【详解】解:∵y=(2m﹣1)x3m﹣2+3是一次函数,∴解得m=1.故答案为1.考核知识点:一次函数.理解定义是关键.10、;【解析】

根据图形,找出直线l1在直线l2上方部分的x的取值范围即可.【详解】由图形可知,当x<−1时,k1x+b>k2x,所以,不等式的解集是x<−1.故答案为x<−1.本题考查了两条直线相交问题,根据画图寻找不等式的解集.11、1【解析】

根据极差的定义求解.【详解】解:数据:3,5,1,12,6,所以极差=12-3=1.

故答案为:1.本题考查了极差的定义,它反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.12、∠B=∠1或【解析】

此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.13、14元/千克【解析】

依据这种什锦糖总价除以总的千克数,即可得到什锦糖每千克的价格.【详解】解:由题可得,这种什锦糖的价格为:,故答案为:14元/千克.本题主要考查了算术平均数,对于n个数x1,x2,…,xn,则就叫做这n个数的算术平均数.三、解答题(本大题共5个小题,共48分)14、答案见详解.【解析】

根据勾股定理计算出、、,再根据勾股定理逆定理可得是直角三角形.【详解】证明:,,,,是直角三角形.此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长,,满足,那么这个三角形就是直角三角形.15、【判断尝试】②;【操作探究】EF的长为2,EF的长为;【实践应用】方案1:两个等腰三角形的腰长都为米.理由见解析,方案2:两个等腰三角形的腰长都为2米.理由见解析,方案3:两个等腰三角形的腰长都为米,理由见解析.方案4:两个等腰三角形的腰长都为米,理由见解析.【解析】

[判断尝试]根据“对直四边形”定义和①梯形;②矩形:③菱形的性质逐一分析即可解答.[操作探究]由菱形性质和30°直角三角形性质即可求得EF的长.[实践应用]先作出“对直四边形”,容易得到另两个等腰三角形,再利用等腰三角形性质和勾股定理即可求出腰长.【详解】解:[判断尝试]①梯形不可能一组对角为直角;③菱形中只有正方形的一组对角为直角,②矩形四个角都是直角,故矩形有一组对角为直角,为“对直四边形”,故答案为②,[操作探究]F在边AD上时,如图:∴四边形AECF是矩形,∴AE=CE,又∵,∴BE=1,AE=,CE=AF=1,∴在Rt△AEF中,EF==2EF的长为2.F在边CD上时,AF⊥CD,∵四边形ABCD是菱形,∴AB=AD=2,∠B=∠D=60°,又∵AE⊥BC,∴∠BAE=∠BAF=30°,∴AE=AF=,∵∠BAD=120°,∴∠EAF=60°,∴△AEF为等边三角形,∴EF=AF=AE=即:EF的长为;故答案为2,.[实践应用]方案1:如图①,作,则四边形ABCD分为等腰、等腰、“对直四边形”ABED,其中两个等腰三角形的腰长都为米.理由:∵,∴四边形ABED为矩形,∴3米,∵,∴△DEC为等腰直角三角形,∴DE=EC=3米,∴DC=米,∵,∴=DC=米.方案2:如图②,作,则四边形ABCD分为等腰△FEB、等腰△FEC、“对直四边形”ABED,其中两个等腰三角形的腰长都为2米.理由:作,由(1)可知3米,BG=AD=1米,∴BC=1+3=4米,∵,∴△BEC为等腰直角三角形,∵,∴BC=2米.方案3:如图③,作CD、BC的垂直平分线交于点E,连接ED、EB,则四边形ABCD分为等腰△CED、等腰△CEB、“对直四边形”ABED,其中两个等腰三角形的腰长都为米.理由:连接CE,并延长交AB于点F,∵CD、BC的垂直平分线交于点E,∴,∴,∴.连接DB,DB==,∵ED=EB,∴△BED为等腰直角三角形,∴ED=米,∴米.方案4:如图④,作,交AB于点E,,则四边形ABCD分为等腰△AFE、等腰△AFD、“对直四边形”BEDC,其中两个等腰三角形的腰长都为米.理由:作,交AB于点E,可证∠ADE45°,∵,∴△ADE为等腰直角三角形,∴DE=米,作,∴DE=米.此题是四边形综合题,主要考查了新定义“对直四边形”的理解和应用,矩形的判定和性质,勾股定理,正确作出图形是解本题的关键.16、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【解析】

(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1),将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击的中位数,∵乙射击的次数是10次,∴=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.17、(1)α;(2)证明见解析.【解析】试题分析:(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°-2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.试题解析:(1)∠ADE=90°-α.(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α.由(1)知,∠ADE=90°-α,∴∠ADC=∠ADE+∠EDC=90°.∴AD⊥BC.∵AB=AC,∴BD=CD.②证明:∵AB=AC,∠ABC=α,∴∠C=∠B=α.∵四边形ABFE是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α.由(1)知,∠DAE=2α,∴∠DAC=α.∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.考点:1.平行四边形的判定与性质;2.等腰三角形的性质.18、(1)A(-4,0);B(0,4);C(2,0);(2)①点E的位置见解析,E(,0);②D点的坐标为(-1,3)或(,)【解析】

(1)先利用一次函数图象上点的坐标特点求得点A、B的坐标;然后把B点坐标代入y=−2x+b求出b的值,确定此函数解析式,然后再求C点坐标;

(2)①根据轴对称—最短路径问题画出点E的位置,由待定系数法确定直线DB1的解析式为y=−3x−4,易得点E的坐标;

②分两种情况:当点D在AB上时,当点D在BC上时.当点D在AB上时,由等腰直角三角形的性质求得D点的坐标为(−1,3);当点D在BC上时,设AD交y轴于点F,证△AOF与△BOC全等,得OF=2,点F的坐标为(0,2),求得直线AD的解析式为,与y=−2x+4组成方程组,求得交点D的坐标为(,).【详解】(1)在y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A(-4,0),B(0,4)把B(0,4)代入y=-2x+b,得b=4,∴直线BC为:y=-2x+4在y=-2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点∴D(-2,2)点B关于x轴的对称点B1的坐标为(0,-4),设直线DB1的解析式为,把D(-2,2),B1(0,-4)代入,得,解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=,∴E点的坐标为(,0).②存在,D点的坐标为(-1,3)或(,).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为,将A(-4,0)与F(0,2)代入得,解得,∴,联立,解得:,∴D的坐标为(,).综上所述:D点的坐标为(-1,3)或(,)本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.一、填空题(本大题共5个小题,每小题4分,共20分)19、x≥2且x≠3【解析】

分式有意义:分母不为0;二次根式有意义,被开方数是非负数.【详解】根据题意,得,解得,x⩾2且x≠3故答案为:x≥2且x≠3此题考查二次根式有意义的条件,分式有意义的条件,解题关键在于掌握运算法则20、x>1【解析】试题解析:由题意得:>0,∵-6<0,∴1-x<0,∴x>1.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论