版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题05倍长中线问题【要点提炼】一、【倍长中线法】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)+倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。
二、【倍长中线法拓展;两次全等】通常,在倍长中线后的第一组全等只是一个基础,往往还需证明第二组全等,但是难点就在于如何去倍长中线,倍长中线后去连接什么线,这是问题的关键。这时一般需要去试错,尤其是当有两个中点时,一般是倍长中线后大概率会有另一组的全等。三、【倍长中线的常见类型】1.基本型如图1,在中,为边上的中线.
延长至点E,使得.若连结,则;若连结,则;若连结则四边形是平行四边形.
2.中点型如图2,为的中点.
若延长至点,使得,连结,则;若延长至点,使得,连结,则.
总结:在线段外,与中点连结的点有和.事实上,和分别是和的中线,只不过是三角形不完整罢了,本质就是隐蔽的“基本型”
3.中点+平行线型如图3,,点为线段的中点.延长交于点(或交延长线于点),则.小结若按“中点型”来倍长,则需证明点在上,为了避免证明三点共线,点就直接通过延长相交得到.因为有平行线,内错角相等,故根据“AAS”或“ASA”证明全等.这里“中点+平行线型”可以看做是“中点型”的改良版.【专题训练】一、解答题(共14小题)
1.小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≌△CAD用到的判定定理是:(用字母表示)(2)AD的取值范围是小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF的长.【答案】【第1空】SAS
【第2空】1<AD<6【解答】解:(1)如图2中,延长AD到E,使DE=AD,连接BE.在△BED和△CAD中,,∴△BED≌△CAD(SAS).(2)∵△BED≌△CAD,∴BE=AC=5,∵AB=7,∴2<AE<12,∴2<2AD<12,∴1<AD<6.故答案分别为SAS,1<AD<6.解决问题:如图3中,解:延长GE交CB的延长线于M.∵四边形ABCD是正方形,∴AD∥CM,∴∠AGE=∠M,在△AEG和△BEM中,,∴△AEG≌△BEM,∴GE=EM,AG=BM=2,∵EF⊥MG,∴FG=FM,∵BF=4,∴MF=BF+BM=2+4=6,∴GF=FM=6.【知识点】四边形综合题2.自主学习,学以致用先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.【解答】证明:延长AD到G,使DF=DG,连接CG,∵AD是中线,∴BD=DC,在△BDF和△CDG中∴△BDF≌△CDG,∴BF=CG,∠BFD=∠G,∵∠AFE=∠BFD,∴∠AFE=∠G,∵BF=CG,BF=AC,∴CG=AC,∴∠G=∠CAF,∴∠AFE=∠CAF,∴AE=EF.【知识点】全等三角形的判定与性质3.阅读并解答问题.如图,已知:AD为△ABC的中线,求证:AB+AC>2AD.证明:延长AD至E使得DE=AD,连接EC,则AE=2AD∵AD为△ABC的中线∴BD=CD在△ABD和△CED中,∴△ABD≌△CED∴AB=EC在△ACE中,根据三角形的三边关系有AC+ECAE而AB=EC,AE=2AD∴AB+AC>2AD这种辅助线方法,我们称为“倍长中线法”,请利用这种方法解决以下问题:(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,求证:CD=;(2)把(1)中的结论用简洁的语言描述出来.【答案】>【解答】解:(1)证明:延长CD至E使DE=CD,连接EB,AE.∵CD为Rt△ABC的中线,∴AD=CD,∵CD=DE,∠ADC=∠EDB,∴△ADC≌△EDB,∴∠ACD=∠DEB,AC=BE,∴AC∥BE,∴四边形ACBE是平行四边形,又∵∠ACB=90°,∴平行四边形ACBE是矩形,∴AB=CE,CD=DE=AD=BD,∴CD=AB;(2)直角三角形斜边上的中线等于斜边的一半.【知识点】直角三角形斜边上的中线、全等三角形的判定与性质
4.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,AB=2.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.【解答】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=BC.(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=2,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=BM=7,∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵CD=2,CF=6,∴tan∠CDF=,∴∠CDF=60°∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°=∠CDF易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,∵AB=2.∴△PAB的“旋补中线”长=AB=.【知识点】四边形综合题5.我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.特例感知:(1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;①当△ABC是一个等边三角形时,AF与BC的数量关系是:;②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是;猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.【解答】解:(1)∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,①∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°∴AD=AE=AB=AC,∠DAE=120°,∴∠ADE=30°,∵AF是“夹补中线”,∴DF=EF,∴AF⊥DE,在Rt△ADF中,AF=AD=AB=BC,故答案为:AF=BC;②当△ABC是直角三角形时,∠BAC=90°,∵∠DAE=90°=∠BAC,易证,△ABC≌△ADE,∴DE=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=DE=BC=a,故答案为a;(2)解:猜想:AF=BC,理由:如图1,延长DA到G,使AG=AD,连EG∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,∴AG=AB,∠EAG=∠BAC,AE=AC,∴△AEG≌△ACB,∴EG=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=EG,∴AF=BC;(3)证明:如图4,∵△PAD是等边三角形,∴DP=AD=3,∠ADP=∠APD=60°,∵∠ADC=150°,∴∠PDC=90°,作PH⊥BC于H,∵∠BCD=90°∴四边形PHCD是矩形,∴CH=PD=3,∴BH=6﹣3=3=CH,∴PC=PB,在Rt△PCD中,tan∠DPC==,∴∠DPC=30°∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,∴∠APB+∠CPD=180°,∵DP=AP,PC=PB,∴△PCD是△PBA的“夹补三角形”,由(2)知,CD=,∴△PAB的“夹补中线”==.【知识点】四边形综合题6.如图1,在△ABC中,点D是BC的中点,延长AD到点G,使DG=AD,连接CG,可以得到△ABD≌△GCD,这种作辅助线的方法我们通常叫做“倍长中线法”.如图2,在△ABC中,点D是BC的中点,点E是AB上一点,连接ED,小明由图1中作辅助线的方法想到:延长ED到点G,使DG=ED,连接CG.(1)请直接写出线段BE和CG的关系:;(2)如图3,若∠A=90°,过点D作DF⊥DE交AC于点F,连接EF,已知BE=3,CF=2,其它条件不变,求EF的长.【答案】BE=CG【解答】解:(1)∵点D是BC的中点,∴BD=CD,在△EBD和△GCD中,∵,∴△EBD≌△GCD(SAS),∴BE=CG,故答案为:BE=CG;(2)如图,连接GF,由(1)知△EBD≌△GCD,∴∠B=∠GCD,BE=CG=3,又∵∠A=90°,∴∠B+∠BCA=90°,∴∠GCD+∠BCA=90°,即∠GCF=90°,∵CG=3,CF=2,∴FG==,∵DF⊥DE,且DE=DG,∴EF=FG=.【知识点】全等三角形的判定与性质7.[方法呈现](1)如图①,△ABC中,AD为中线,已知AB=3,AC=5,求中线AD长的取值范围.解决此问题可以用如下方法:延长AD至点E,使DE=AD,连结CE,则易证△DEC≌△DAB,得到EC=AB=3,则可得AC﹣CE<AE<AC+CE,从而可得中线AD长的取值范围是.[探究应用](2)如图②,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系,并写出完整的证明过程.(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.【答案】2<AD<8【解答】解:(1)由题意知AC﹣CE<AE<AC+CE,即5﹣4<AD<5+3,∴2<AD<8,故答案为:2<AD<8;(2)如图②,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中CE=BE,∠BAF=∠F,∠AEB=∠FEC,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠FAD,∴∠FAD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.(3)如图③,延长AE,DF交于点G,同(2)可得:AF=FG,△ABE≌△GEC,∴AB=CG,∴AF+CF=AB.【知识点】四边形综合题8.数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在△ABC中,AB=8,AC=6,D是BC的中点,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,请补充完整证明“△ADC≌△EDB”的推理过程.(1)求证:△ADC≌△EDB证明:∵延长AD到点E,使DE=AD在△ADC和△EDB中AD=ED(已作)∠ADC=∠EDB()CD=BD(中点定义)∴△ADC≌△EDB()(2)探究得出AD的取值范围是;【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,△ABC中,∠B=90°,AB=2,AD是△ABC的中线,CE⊥BC,CE=4,且∠ADE=90°,求AE的长.【答案】【第1空】对顶角相等
【第2空】SAS
【第3空】1<AD<7【解答】解:(1)证明:延长AD到点E,使DE=AD,在△ADC和△EDB中,AD=ED(已作),∠ADC=∠EDB(对顶角相等),CD=BD(中点定义),∴△ADC≌△EDB(SAS),故答案为:对顶角相等,SAS;(2)∵△ADC≌△EDB,∴BE=AC=6,8﹣6<AE<8+6,∴1<AD<7,故答案为:1<AD<7;(3)延长AD交EC的延长线于F,∵AB⊥BC,EF⊥BC,∴∠ABD=∠FCD,在△ABD和△FCD中,,∴△ABD≌△FCD,∴CF=AB=2,AD=DF,∵∠ADE=90°,∴AE=EF,∵EF=CE+CF=CE+AB=4+2=6,∴AE=6.【知识点】三角形综合题9.我们定义:在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'叫△ABC的“旋补三角形”,△AB'C'的边B'C'上的中线AD叫做△ABC的“旋补中线”.下面各图中,△AB'C'均是△ABC的“旋补三角形”,AD均是△ABC的“旋补中线”.(1)如图1,若△ABC为等边三角形,BC=8,则AD的长等于;(2)如图2,若∠BAC=90°,求证:AD=BC;(3)如图3,若△ABC为任意三角形,(2)中结论还成立吗?如果成立,给予证明;如果不成立,说明理由.【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC=4,(2)证明:如图2中,∵AB绕点A旋转得到AB',AC绕点A旋转得到AC',∴AB′=AB,AC'=AC,∵∠BAC=90°,α+β=180°,∠B′AC′=360°﹣(α+β)﹣∠BAC,∴∠B′AC′=360°﹣180°﹣90°=90°,∴∠BAC=∠B′AC′,∴△BAC≌△B′AC′(SAS)∴BC=B′C′,∵AD是△AB'C'边B'C'上的中线,∠B′AC′=90°.∴AD=B′C′.∴AD=BC.(3)结论AD=BC成立.理由:如图3中,延长AD到A′,使得AD=DA′,连接B′A′,C′A′.∴AD=AA′,∵B′D=DC′,AD=DA′,∴四边形AB′A′C′是平行四边形,∴AC′=B′A′=AC,∵∠BAC+∠B′AC′=360°﹣180°=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠AB′A′,∵AB=AB′,∴△BAC≌△AB′A′(SAS)∴BC=AA′,∴AD=BC.【知识点】几何变换综合题10.阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理﹣﹣“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:AB2+AC2=2AD2+2BD2.小明尝试对它进行证明,部分过程如下:解:过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=AE2+BE2+AE2+CE2=…(1)请你完成小明剩余的证明过程;理解运用:(2)①在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=;②如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC=90°,点E、F分别为AO、BC的中点,则EF的长为;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A(﹣3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.请你利用上面的方法和结论,求出AD长的最大值.【解答】解:(1)过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=2AE2+(x+y)2+(x﹣y)=2AE2+2x2+2y2、=2AE2+2BD2+2DE2=2AD2+2BD2.(2)①∵AB2+AC2=2AD2+2BD2,∴62+42=2AD2+2×42,∴AD=②如图3中,∵AF是△ABC的中线,EF是△AEO的中线,OF是△BOC的中线,∵2EF2+2AE2=AF2+OF2,2AF2+2BF2=AB2+AC2,OF2=OB2﹣BF2,∴4EF2=2OB2﹣4AE2=2OB2﹣OA2,∴EF2=OB2﹣OA2=16,∴EF=4(负根以及舍弃),故答案为.4.(3)如图4中,连接OA,取OA的中点E,连接DE.由(2)的②可知:DE═OB2﹣OA2=,在△ADE中,AE=,DE=,∵AD≤AE+DE,∴AD长的最大值为+=10.【知识点】圆的综合题
11.[问题提出]如图①,在△ABC中,若AB=6,AC=4,求BC边上的中线AD的取值范围.[问题解决]解决此问题可以用如下方法,延长AD到点E使DE=AD,再连结BE(或将△ACD绕着点D逆时针装转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断,由此得出中线AD的取值范围是[应用]如图②,如图,在△ABC中,D为边BC的中点,已知AB=5,AC=3,AD=2.求BC的长[拓展]如图③,在△ABC中,∠A=90°,点D是边BC的中点,点E在边AB上,过点D作DF⊥DE交边AC于点F,连结EF,已知BE=4,CF=5,则EF的长为【解答】解:(1)在△DAC和△DEB中,,∴△DAC≌△DEB(SAS),∴AC=EB=4,∵AB﹣BE<AE<AB+BE,AB=6,∴2<AE<10,∴1<AD<5,故答案为:1<AD<5;(2)延长AD到E,使得AD=DE,连接BE,如图②,在△DAC和△DEB中,,∴△DAC≌△DEB(SAS),∴AC=EB=3,∵AE=2AD=4,AB=5,∴BE2+AE2=AB2,∴∠AEB=90°,∴BD=,∴BC=2BD=2;(3)延长FD到G,使得DG=FD,连接BG,EG,如图③,在△BDG和△CDF中,,∴△BDG≌△CDF(SAS),∴BG=CF=5,DG=DF,∠DBG=∠DCF,∵DE⊥DF,∴EG=EF,∵∠A=90°,∴∠ABC+∠ACB=90°,∴∠ABC+∠DBG=90°,∴EG=,∴EF=,故答案为:.【知识点】全等三角形的判定与性质、直角三角形斜边上的中线、垂线段最短、三角形三边关系、解直角三角形12.我们定义:如图1,在△ABC看,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.【解答】解:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;理由:∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3,当∠BAC=90°,BC=8时,则AD长为4.理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)猜想.证明:如图,延长AD至点Q,则△DQB'≌△DAC',∴QB'=AC',QB'∥AC',∴∠QB'A+∠B'AC'=180°,∵∠BAC+∠B'AC'=180°,∴∠QB'A=∠BAC,又由题意得到QB'=AC'=AC,AB'=AB,∴△AQB'≌△BCA,∴AQ=BC=2AD,即.【知识点】几何变换综合题13.如图1,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM(点D与点A重合除外)上时,以CD为一边且在CD的下方作等边△CDE,连接BE.(1)判断AD与BE是否相等,请说明理由;(2)如图2,若AB=8,点P、Q两点在直线BE上且CP=CQ=5,试求PQ的长;(3)在第(2)小题的条件下,当点D在线段AM的延长线(或反向延长线)上时.判断PQ的长是否为定值,若是请直接写出PQ的长;若不是请简单说明理由.【解答】解:(1)AD=BE.理由如下:∵△ABC,△CDE都是等边三角形,∴AC=BC,CD=CE,∵∠ACD+∠BCD=∠ACB=60°,∠BCE+∠BCD=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图,过点C作CN⊥BQ于点N,∵CP=CQ,∴PQ=2PN,∵△ABC是等边三角形,AM是中线,∴CM⊥AD,CM=BC=×8=4,∴CN=CM=4(全等三角形对应边上的高相等),∵CP=CQ=5,∴PN===3,∴PQ=2PN=2×3=6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度货物运输合同风险评估与保险服务方案3篇
- 2025年度针对性学科家教服务合同(含心理辅导)3篇
- 共有产权房交易模板
- 展览馆承台施工合同
- 生产流程优化措施的通知
- 挖掘机地热能开发合同
- 临时科技研发基地租赁合同
- 2024年版详解云计算服务与支持合同
- 地铁站供热系统安装合同
- 建材行业烟囱安装合同模板
- 工作责任心测评
- 人教精通版5年级(上下册)单词表(含音标)
- 五年级语文下册全册教材分析
- 第1课+中华文明的起源与早期国家+课件+-2023-2024学年高中历史统编版2019必修中外历史纲要上册+
- 大厦物业管理保洁服务标准5篇
- 神经内科国家临床重点专科建设项目评分标准(试行)
- 城市设计与城市更新培训
- 2023年贵州省铜仁市中考数学真题试题含解析
- 世界卫生组织生存质量测量表(WHOQOL-BREF)
- 某送电线路安全健康环境与文明施工监理细则
- PEP-3心理教育量表-评估报告
评论
0/150
提交评论