2025届天津市北辰区数学高二上期末预测试题含解析_第1页
2025届天津市北辰区数学高二上期末预测试题含解析_第2页
2025届天津市北辰区数学高二上期末预测试题含解析_第3页
2025届天津市北辰区数学高二上期末预测试题含解析_第4页
2025届天津市北辰区数学高二上期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届天津市北辰区数学高二上期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某班新学期开学统计新冠疫苗接种情况,已知该班有学生45人,其中未完成疫苗接种的有5人,则该班同学的疫苗接种完成率为()A. B.C. D.2.已知椭圆上一点到椭圆一个焦点的距离是,则点到另一个焦点的距离为()A.2 B.3C.4 D.53.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.4.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.5.以,为焦点,且经过点的椭圆的标准方程为()A. B.C. D.6.双曲线的左、右焦点分别为、,点P在双曲线右支上,,,则C的离心率为()A. B.2C. D.7.已知点是点在坐标平面内的射影,则点的坐标为()A. B.C. D.8.渐近线方程为的双曲线的离心率是()A.1 B.C. D.29.如图,空间四边形中,,,,且,,则()A. B.C. D.10.已知、为非零实数,若且,则下列不等式成立的是()A. B.C. D.11.命题:“,”的否定是()A., B.,C., D.,12.如图,四棱锥中,底面是边长为的正方形,平面,为底面内的一动点,若,则动点的轨迹在()A.圆上 B.双曲线上C.抛物线上 D.椭圆上二、填空题:本题共4小题,每小题5分,共20分。13.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是奇数的四位数,这样的四位数一共有___________个.(用数字作答)14.一条光线从点射出,经x轴反射,其反射光线所在直线与圆相切,则反射光线所在的直线方程为____.15.若函数在区间内存在最大值,则实数的取值范围是____________.16.(建三江)函数在处取得极小值,则=___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的上一点处的切线方程为,椭圆C上的点与其右焦点F的最短距离为,离心率为(1)求椭圆C的标准方程;(2)若点P为直线上任一点,过P作椭圆的两条切线PA,PB,切点为A,B,求证:18.(12分)王同学入读某大学金融专业,过完年刚好得到红包6000元,她计划以此作为启动资金进行理投资,每月月底获得的投资收益是该月月初投入资金的20%,并从中拿出1000元作为自己的生活费,余款作为资金全部投入下个月,如此继续.设第n个月月底的投资市值为an.(1)求证:数列{-5000}为等比数列;(2)如果王同学想在第二年过年的时候给奶奶买一台全身按摩椅(商场标价为12899元),将一年后投资市值全部取出来是否足够?19.(12分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.20.(12分)已知正项等差数列满足:,且,,成等比数列(1)求的通项公式;(2)设的前n项和为,且,求的前n项和21.(12分)如图所示等腰梯形ABCD中,,,,点E为CD的中点,沿AE将折起,使得点D到达F位置.(1)当时,求证:平面AFC;(2)当时,求二面角的余弦值.22.(10分)在平面直角坐标系中,设椭圆()的离心率是e,定义直线为椭圆的“类准线”,已知椭圆C的“类准线”方程为,长轴长为8.(1)求椭圆C的标准方程;(2)O为坐标原点,A为椭圆C的右顶点,直线l交椭圆C于E,F两不同点(点E,F与点A不重合),且满足,若点P满足,求直线的斜率的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用古典概型的概率求解.【详解】该班同学的疫苗接种完成率为故选:D2、C【解析】根据椭圆的定义,结合题意,即可求得结果.【详解】设椭圆的两个焦点分别为,故可得,又到椭圆一个焦点的距离是,故点到另一个焦点的距离为.故选:.3、A【解析】由函数在上单调递增,可得,从而可求出实数的取值范围【详解】由,得,因为函数在区间上单调递增,所以在区间上恒成立,即恒成立,因为,所以,所以,所以实数的取值范围为,故选:A4、A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.5、B【解析】根据焦点在x轴上,c=1,且过点,用排除法可得.也可待定系数法求解,或根据椭圆定义求2a可得.【详解】因为焦点在x轴上,所以C不正确;又因为c=1,故排除D;将代入得,故A错误,所以选B.故选:B6、C【解析】由,所以为直角三角形,根据双曲线的定义结合勾股定理可得答案.【详解】由,所以为直角三角形.,根据双曲线的定义可得所以,即,即,所以故选:C7、D【解析】根据空间中射影的定义即可得到答案.【详解】因为点是点在坐标平面内的射影,所以的竖坐标为0,横、纵坐标与A点的横、纵坐标相同,所以点的坐标为.故选:D8、B【解析】根据双曲线渐近线方程可确定a,b的关系,进而求得离心率.【详解】因为双曲线近线方程为,故双曲线为等轴双曲线,则a=b,故离心率为,则,故选:B.9、C【解析】根据空间向量的线性运算即可求解.【详解】因为,又因为,,所以.故选:C10、D【解析】作差法即可逐项判断.【详解】或,对于A:,∵,无法判断正负,故A错误;对于B:,∵无法判断正负,故B错误;对于C:,∵,,∴,,故C错误;对于D:,∴,故D正确.故选:D.11、D【解析】利用全称量词命题的否定可得出结论.【详解】由全称量词命题的否定可知,命题“,”的否定是“,”.故选:D.12、A【解析】根据题意,得到两两垂直,以点为坐标原点,分别以为轴,建立空间直角坐标系,设,由题意,得到,,再由得到,求出点的轨迹,即可得出结果.【详解】由题意,两两垂直,以点为坐标原点,分别以为轴,建立如图所示的空间直角坐标系,因为底面是边长为的正方形,则,,因为为底面内的一动点,所以可设,因此,,因为平面,所以,因此,所以由得,即,整理得:,表示圆,因此,动点的轨迹在圆上.故选:A.【点睛】本题主要考查立体几何中的轨迹问题,灵活运用空间向量的方法求解即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、504【解析】分两种情况求解,一是四个数字中没有奇数,二是四个数字中有一个奇数,然后根据分类加法原理可求得结果【详解】当四个数字中没有奇数时,则这样的四位数有种,当四个数字中有一个奇数时,则从5个奇数中选一个奇数,再从4个偶数中选3个数,然后对这4个数排列即可,所以有种,所以由分类加法原理可得共有种,故答案为:50414、或【解析】点关于轴的对称点为,即反射光线过点,分别讨论反射光线的斜率存在与不存在的情况,进而求解即可【详解】点关于轴的对称点为,(1)设反射光线的斜率为,则反射光线的方程为,即,因为反射光线与圆相切,所以圆心到反射光线的距离,即,解得,所以反射光线方程为:;(2)当不存在时,反射光线,此时,也与圆相切,故答案为:或【点睛】本题考查直线在光学中的应用,考查圆的切线方程15、【解析】首先利用导数判断函数的单调性,再根据函数在开区间内存在最大值,可判断极大值点就是最大值点,列式求解.【详解】由题可知:所以函数在单调递减,在单调递增,故函数的极大值为.所以在开区间内的最大值一定是又,所以得实数的取值范围是故答案为:【点睛】关键点点睛:由函数在开区间内若存在最大值,即极大值点在区间内,同时还得满足极大值点是最大值,还需列不等式,不要忽略这个不等式.16、【解析】由,令,解得或,且时,;时,;时,,所以当时,函数取得极小值考点:导数在函数中的应用;极值的条件三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)设为椭圆上的点,为椭圆的右焦点,求出然后求解最小值,推出,,,得到双曲线方程(2)设,,,,,即可得到,依题意可得以、为切点的切线方程,从而得到直线的方程,再分与两种情况讨论,即可得证;【小问1详解】解:设为椭圆上的点,为椭圆的右焦点,因为,所以,又,所以当且仅当时,,因为,所以,,因为,所以,故椭圆的标准方程为【小问2详解】解:由(1)知,设,,,,,所以,由题知,以为切点的椭圆切线方程为,以为切点的椭圆切线方程为,又点在直线、上,所以、,所以直线的方程为,当时,直线的斜率不存在,直线斜率为,所以,当时,,所以,所以,综上可得;18、(1)证明见解析(2)足够【解析】(1)由题意可得出递推关系,变形后利用等比数列的定义求证即可;(2)由(1)利用等比数列的通项公式求出,再求出,再计算即可得出结论.【小问1详解】依题意,第1个月底股票市值则又∴数列是首项为1200,公比为1.2的等比数列.【小问2详解】由(1)知∴∵,所以王同学将一年理财投资所得全部取出来是足够的.19、(1)(2)【解析】(1)由题意,,求出直线l的斜率,利用点斜式即可求解;(2)由题意,利用点斜式求出直线l的方程,然后由点到直线的距离公式求出弦心距,最后根据弦长公式即可求解.小问1详解】解:由题意,圆心,P为弦的中点时,由圆的性质有,又,所以,所以直线l的方程为,即;【小问2详解】解:因为直线l与直线平行,所以,所以直线的方程为,即,因为圆心到直线的距离,又半径,所以由弦长公式得.20、(1);(2).【解析】(1)利用等差数列的通项公式结合条件即求;(2)利用条件可得,然后利用错位相减法即求.【小问1详解】设等差数列公差为d,由得,即,化简得,又,,成等比数列,则,即,将代入上式得,化简得,解得或-2(舍去),则,所以【小问2详解】∵,当时,,当时,,符合上式,则,所以,令,则,,∴,化简得综上,的前n项和21、(1)证明见解析(2)【解析】(1)结合线面垂直的判定定理来证得结论成立.(2)建立空间直角坐标系,利用向量法来求得二面角的大小.【小问1详解】设,由于四边形是等腰梯形,是的中点,,所以,所以四边形是平行四边形,由于,所以四边形是菱形,所以,由于,是的中点,所以,由于,所以平面.【小问2详解】由于,所以三角形、三角形、三角形是等边三角形,设是的中点,设,则,所以,所以,由于两两垂直.以为空间坐标原点建立如图所示空间直角坐标系,,,平面的法向量为,设平面法向量为,则,故可设,由图可知,二面角为钝角,设二面角为,,则.22、(1);(2).【解析】(1)由题意列关于,,的方程,联立方程组求得,,,则椭圆方程可求;(2)分直线轴与直线l不垂直于x轴两种情况讨论,当直线l不垂直于x轴时,设,,直线l:(,),联立直线方程与椭圆方程,消元由,得到,再列出韦达定理,由则,解得,再由,求出的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论