安徽省浮山中学等重点名校2025届数学高二上期末预测试题含解析_第1页
安徽省浮山中学等重点名校2025届数学高二上期末预测试题含解析_第2页
安徽省浮山中学等重点名校2025届数学高二上期末预测试题含解析_第3页
安徽省浮山中学等重点名校2025届数学高二上期末预测试题含解析_第4页
安徽省浮山中学等重点名校2025届数学高二上期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省浮山中学等重点名校2025届数学高二上期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于两个平面、,“内有三个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知抛物线的焦点为F,且点F与圆上点的距离的最大值为6,则抛物线的准线方程为()A. B.C. D.3.已知直线与圆相离,则以,,为边长的三角形为()A.钝角三角形 B.直角三角形C.锐角三角形 D.不存在4.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或5.某救援队有5名队员,其中有1名队长,1名副队长,在一次救援中需随机分成两个行动小组,其中一组2名队员,另一组3名队员,则正、副队长不在同一组的概率为()A. B.C. D.6.若,则()A.1 B.0C. D.7.南北朝时期杰出的数学家祖冲之的儿子祖暅在数学上也有很多创造,其最著名的成就是祖暅原理:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,现有一个圆柱体和一个长方体,它们的底面面积相等,高也相等,若长方体的底面周长为,圆柱体的体积为,根据祖暅原理,可推断圆柱体的高()A.有最小值 B.有最大值C.有最小值 D.有最大值8.已知集合,集合或,是实数集,则()A. B.C. D.9.已知是椭圆两个焦点,P在椭圆上,,且当时,的面积最大,则椭圆的标准方程为()A. B.C. D.10.在等差数列中,若,则()A.6 B.9C.11 D.2411.某商场开通三种平台销售商品,五一期间这三种平台的数据如图1所示.该商场为了解消费者对各平台销售方式的满意程度,用分层抽样的方法抽取了6%的顾客进行满意度调查,得到的数据如图2所示.下列说法正确的是()A.样本中对平台一满意的消费者人数约700B.总体中对平台二满意的消费者人数为18C.样本中对平台一和平台二满意的消费者总人数为60D.若样本中对平台三满意消费者人数为120,则12.若向量则()A. B.3C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的渐近线上两点A,B的中点坐标为(2,2),则直线AB的斜率是_________.14.曲线在点(1,1)处的切线方程为_____15.已知直线:与直线:平行,则的值为___________.16.直线与圆相交于A,B两点,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的公差为2,且,,成等比数列.(1)求的通项公式;(2)求数列的前项和.18.(12分)已知函数(1)讨论的单调性;(2)当时,证明19.(12分)设:实数满足,:实数满足.(1)若,且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.20.(12分)如图,在四棱锥中,平面平面,,,,,(Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)若点在棱上,且平面,求线段的长21.(12分)求满足下列条件的双曲线的标准方程(1)焦点在x轴上,实轴长为4,实半轴长是虚半轴长的2倍;(2)焦点在y轴上,渐近线方程为,焦距长为22.(10分)已知直线经过点且斜率为(1)求直线的一般式方程(2)求与直线平行,且过点的直线的一般式方程(3)求与直线垂直,且过点的直线的一般式方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有三个点到的距离相等,当这三个点不在一条直线上时,可得;当这三个点在一条直线上时,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有三个点到的距离相等”是“”的必要不充分条件.故选:B.2、D【解析】先求得抛物线的焦点坐标,再根据点F与圆上点的距离的最大值为6求解.【详解】因为抛物线的焦点为F,且点F与圆上点的距离的最大值为6,所以,解得,所以抛物线准线方程为,故选:D3、A【解析】应用直线与圆的相离关系可得,再由余弦定理及三角形内角的性质即可判断三角形的形状.【详解】由题设,,即,又,所以,且,故以,,为边长的三角形为钝角三角形.故选:A.4、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程为,故选:D﹒5、C【解析】求出基本事件总数与正、副队长不在同一组的基本事件个数,即可求出答案.【详解】基本事件总数为正、副队长不在同一组的基本事件个数为故正、副队长不在同一组的概率为.故选:C.6、C【解析】由结合二项式定理可得出,利用二项式系数和公式可求得的值.【详解】,当且时,,因此,.故选:C.【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式,考查学生的转化能力与计算能力,属于基础题.7、C【解析】由条件可得长方体的体积为,设长方体的底面相邻两边分别为,根据基本不等式,可求出底面面积的最大值,进而求出高的最小值,得出结论.【详解】依题意长方体的体积为,设圆柱的高为长方体的底面相邻两边分别为,,当且仅当时,等号成立,.故选:C.【点睛】本题以数学文化为背景,考查基本不等式求最值,要认真审题,理解题意,属于基础题.8、A【解析】先化简集合,再由集合的交集、补集运算求解即可【详解】,或,故故选:A9、A【解析】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,即可解出【详解】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,∵时,△F1PF2的面积最大,∴a==,b=∴椭圆的标准方程为故选:A10、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B11、C【解析】根据扇形图和频率分布直方图判断.【详解】对于A:样本中对平台一满意的人数为,故选项A错误;对于B:总体中对平台二满意的人数约为,故选项B错误;对于C:样本中对平台一和平台二满意的总人数为:,故选项C正确:对于D:对平台三的满意率为,所以,故选项D错误故选:C12、D【解析】先求得,然后根据空间向量模的坐标运算求得【详解】由于向量,,所以.故故选:D二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】设出直线的方程,通过联立直线的方程和渐近线的方程,结合中点的坐标来求得直线的斜率.【详解】双曲线,,渐近线方程为,设直线的方程为,,由,由,所以,所以直线的斜率是.故答案为:14、【解析】根据导数的几何意义求出切线的斜率,再根据点斜式可求出结果.【详解】因为,所以曲线在点(1,1)处的切线的斜率为,所以所求切线方程为:,即.故答案为:.15、-1【解析】根据两直线平行的条件列式求解即可.【详解】由题意可知,的斜率,的斜率,∵,∴解得.故当时,直线:与直线:平行.故答案为:-1.16、【解析】直线过定点,圆心,当时,取得最小值,再由勾股定理即可求解.【详解】由,得,由,得直线过定点,且在圆的内部,由圆可得圆心,半径,当时,取得最小值,圆心与定点的距离为,则的最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由,,成等比数列和,可得,解方程求出,从而可求出的通项公式,(2)由(1)可得,然后利用裂项相消法可求出【小问1详解】因为等差数列的公差为2,所以又因为成等比数列,所以,解得,所以.【小问2详解】由(1)得,所以.18、(1)答案见解析(2)证明见解析【解析】(1)求导得,进而分和两种情况讨论求解即可;(2)根据题意证明,进而令,再结合(1)得,研究函数的性质得,进而得时,,即不等式成立.【小问1详解】解:函数的定义域为,,∴当时,在上恒成立,故函数在区间上单调递增;当时,由得,由得,即函数在区间上单调递增,在上单调递减;综上,当时,在区间上单调递增;当时,在区间上单调递增,在上单调递减;【小问2详解】证明:因为时,证明,只需证明,由(1)知,当时,函数在区间上单调递增,在上单调递减;所以.令,则,所以当时,,函数单调递减;当时,,函数单调递增,所以.所以时,,所以当时,19、(1)(2)【解析】(1)首先分别求出、为真时参数的取值范围,再由为真,取并集即可;(2)首先解一元二次不等式,依题意是的必要不充分条件,则可推出,而不能推出,即可得到不等式组,解得即可;【小问1详解】解:当时,,即,解得,即为真时,实数的取值范围为实数满足,即,解得:,即为真时,实数的取值范围为因,所以,即;【小问2详解】解:由,即,所以,因为是的充分不必要条件,所以是的必要不充分条件,则可推出,而不能推出,则,解得;20、(Ⅰ)见解析.(Ⅱ).(Ⅲ).【解析】第一问根据面面垂直的性质和线面垂直的性质得出线线垂直的结论,注意在书写的时候条件不要丢就行;第二问建立空间直角坐标系,利用法向量所成角的余弦值来求得二面角的余弦值;第三问利用向量共线的关系,得出向量的坐标,根据线面平行得出向量垂直,利用其数量积等于零,求得结果.(Ⅰ)证明:因为平面⊥平面,且平面平面,因为⊥,且平面所以⊥平面因为平面,所以⊥.(Ⅱ)解:在△中,因为,,,所以,所以⊥.所以,建立空间直角坐标系,如图所示所以,,,,,,.易知平面的一个法向量为.设平面的一个法向量为,则,即,令,则.设二面角的平面角为,可知为锐角,则,即二面角的余弦值为(Ⅲ)解:因为点在棱,所以,因为,所以,.又因为平面,为平面的一个法向量,所以,即,所以所以,所以.21、(1)(2)【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论