江西省宜春市靖安县靖安中学2025届高一数学第一学期期末学业质量监测试题含解析_第1页
江西省宜春市靖安县靖安中学2025届高一数学第一学期期末学业质量监测试题含解析_第2页
江西省宜春市靖安县靖安中学2025届高一数学第一学期期末学业质量监测试题含解析_第3页
江西省宜春市靖安县靖安中学2025届高一数学第一学期期末学业质量监测试题含解析_第4页
江西省宜春市靖安县靖安中学2025届高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省宜春市靖安县靖安中学2025届高一数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知关于x的不等式解集为,则下列说法错误的是()A.B.不等式的解集为C.D.不等式的解集为2.方程的零点所在的区间为()A. B.C. D.3.下列函数中,在上单调递增的是()A. B.C. D.4.已知函数的部分图象如图所示,则的值可以为A.1 B.2C.3 D.45.若则A. B.C. D.6.已知函数,当时.方程表示的直线是()A. B.C. D.7.已知集合,则集合中元素的个数为()A.1 B.2C.3 D.48.设则的最大值是()A.3 B.C. D.9.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.60 B.65C.66 D.6910.在去年的足球联赛上,一队每场比赛平均失球个数是1.5,全年比赛失球个数的标准差是1.1;二队每场比赛平均失球个数是2.1,全年比赛失球个数的标准差是0.4.则下列说法错误的是()A.平均来说一队比二队防守技术好 B.二队很少失球C.一队有时表现差,有时表现又非常好 D.二队比一队技术水平更不稳定二、填空题:本大题共6小题,每小题5分,共30分。11.将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,则该圆锥的底面半径为______12.已知是定义在R上的周期为2的奇函数,当时,,则___________.13.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________.14.____________15.已知命题“∀x∈R,e x≥a”16.设当时,函数取得最大值,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,当时,.(1)若函数的图象过点,求此时函数的解析式;(2)若函数只有一个零点,求实数a的值.18.如图,在平面直角坐标系中,角,的始边均为轴正半轴,终边分别与圆交于,两点,若,,且点的坐标为(1)若,求实数的值;(2)若,求的值19.从某小学随机抽取100多学生,将他们的身高(单位:)数据绘制成频率分布直方图(如图).(1)求直方图中的值;(2)试估计该小学学生的平均身高;(3)若要从身高在三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在内的学生中选取的人数应为多少人?20.如图,四棱锥的底面为正方形,底面,分别是的中点.(1)求证:平面;(2)求证:平面平面.21.已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的侧面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据已知条件得和是方程的两个实根,且,根据韦达定理可得,根据且,对四个选项逐个求解或判断可得解.【详解】由已知可得-2,3是方程的两根,则由根与系数的关系可得且,解得,所以A正确;对于B,化简为,解得,B正确;对于C,,C正确;对于D,化简为:,解得,D错误故选:D.2、C【解析】分析函数的单调性,利用零点存在定理可得出结论.【详解】因为函数、均为上的增函数,故函数在上也为增函数,因为,,,,由零点存在定理可知,函数的零点所在的区间为.故选:C.3、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、、在上均为减函数,函数在上为增函数.故选:B.4、B【解析】由图可知,故,选.5、A【解析】集合A三个实数0,1,2,而集合B表示的是大于等于1小于2的所有实数,所以两个集合的交集{1},故选A.考点:集合的运算.6、C【解析】先利用对数函数的性质得到所以,再利用直线的斜率和截距判断.【详解】因为时,,所以则直线的斜率为,在轴上的截距故选:C7、D【解析】由题意,集合是由点作为元素构成的一个点集,根据,即可得到集合的元素.【详解】由题意,集合B中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集(2)看这些元素满足什么限制条件(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性8、D【解析】利用基本不等式求解.【详解】因为所以,当且仅当,即时,等号成立,故选:D9、B【解析】由已知可得方程,解出即可【详解】解:由已知可得,解得,两边取对数有,解得.故选:B10、B【解析】利用平均数和标准差的定义及意义即可求解.【详解】对于A,因为一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,所以平均说来一队比二队防守技术好,故A正确;对于B,因为二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,所以二队经常失球,故B错误;对于C,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,所以一队有时表现很差,有时表现又非常好,故C正确;对于D,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,所以二队比一队技术水平更稳定,故D正确;故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】设该圆锥的底面半径为r,推导出母线长为2r,再由圆锥的高为,能求出该圆锥的底面半径【详解】设该圆锥的底面半径为r,将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,,解得,圆锥的高为,,解得故答案为1【点睛】本题考查圆锥的底面半径的求法,考查圆锥性质、圆等基础知识,考查运算求解能力,是基础题12、##【解析】根据函数的周期和奇偶性即可求得答案.【详解】因为函数的周期为2的奇函数,所以.故答案为:.13、【解析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案.【详解】幂函数在上单调递减,故,解得.,故,,.当时,不关于轴对称,舍去;当时,关于轴对称,满足;当时,不关于轴对称,舍去;故,,函数在和上单调递减,故或或,解得或.故答案为:14、【解析】,故答案为.考点:对数的运算.15、a≤0【解析】根据∀x∈R,e x≥a成立,【详解】因为∀x∈R,e所以e 则a≤0,故答案为:a≤016、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解析】(1)由计算;(2)只有一个解,由对数函数性质转化为方程只有一个正根,分,和讨论【详解】(1),当时,.函数的图象过点,,解得,此时函数.(2),∵函数只有一个零点,只有一个正解,∴当时,,满足题意;当时,只有一个正根,若,解得,此时,满足题意;若方程有两个相异实根,则两根之积为,此时方程有一个正根,符合题意;综上,或.【点睛】本题考查函数零点与方程根的分布问题.解题时注意函数的定义域,在转化时要正确确定方程根的范围,对多项式方程,要按最高次项系数为0和不为0进行分类讨论18、(1);(2)【解析】(1)根据题中条件,先由二倍角的正切公式,求出,再根据任意角的三角函数,即可求出的值;(2)由题中条件,根据两角差的正切公式,先得到,再由同角三角函数基本关系,求出和,利用二倍角公式,以及两角和的余弦公式,即可求出结果.【详解】(1)由题意可得,∴,或∵,∴,即,∴(2)∵,,,∴,,∴,,∴19、(1)(2)(3)4人【解析】(1)根据频率和为1,求出的值;(2)根据频率分布直方图,计算平均数即可(3)根据分层抽样方法特点,计算出总人数以及应抽取的人数比即可;【小问1详解】解:因为直方图中的各个矩形的面积之和为1,所以有,解得;【小问2详解】解:根据频率分布直方图,计算平均数为【小问3详解】解:由直方图知,三个区域内的学生总数为人,其中身高在内的学生人数为人,所以从身高在范围内抽取的学生人数为人;20、(1)证明见解析;(2)证明见解析.【解析】(1)连接BD,根据线面平行的判定定理只需证明EF∥PD即可;(2)利用线面垂直的判定定理可得面,再利用面面垂直的判定定理即证【小问1详解】如图,连结,则是的中点,又是的中点,∴,又∵平面,面,∴平面;【小问2详解】∵底面是正方形,∴,∵平面,平面,∴,又,∴面,又平面,故平面平面.21、(1);(2)【解析】(1)根据四棱锥的体积得PA=,进而得正视图的面积;(2)过A作AE∥CD交BC于E,连接PE,确定四个侧面积面积S△PAB,S△PAD,S△PCD,S△PBC求和即可.试题解析:(1)如图所示四棱锥P-ABCD的高为PA,底面积为S=·CD=×1=∴四棱锥P-ABCD的体积V四棱锥P-ABCD=S·PA=×·PA=,∴PA=∴正视图的面积为S=×2×=.(2)如图所示,过A作AE∥CD交BC于E,连接PE.根据三视图可知,E是BC的中点,且BE=CE=1,AE=CD=1,且BC⊥AE,AB=又PA⊥平面ABCD,∴PA⊥BC,PA⊥DC,PD=,∴BC⊥面PAE,∴BC⊥PE,又DC⊥AD,∴DC⊥面PAD,∴DC⊥PD,且PA⊥平面ABCD.∴PA⊥AE,∴PE2=PA2+AE2=3.∴PE=.∴四棱锥P-ABCD的侧面积为S=S△PAB+S△PAD+S△PCD+S△PBC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论