版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省晋江市永春县第一中学2025届数学高三第一学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是边长为的正三角形,若,则A. B.C. D.2.若某几何体的三视图如图所示,则该几何体的表面积为()A.240 B.264 C.274 D.2823.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为()A. B. C. D.5.的展开式中的项的系数为()A.120 B.80 C.60 D.406.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A. B. C. D.7.设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是()A. B.C. D.8.设、,数列满足,,,则()A.对于任意,都存在实数,使得恒成立B.对于任意,都存在实数,使得恒成立C.对于任意,都存在实数,使得恒成立D.对于任意,都存在实数,使得恒成立9.集合的真子集的个数为()A.7 B.8 C.31 D.3210.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. B. C. D.11.已知函数若对区间内的任意实数,都有,则实数的取值范围是()A. B. C. D.12.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则的展开式中含的项的系数为_______.14.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.15.“北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点、远地点离地面的距离大约分别是,,则“北斗三号”卫星运行轨道的离心率为__________.16.抛物线上到其焦点距离为5的点有_______个.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中.(Ⅰ)当时,求函数的单调区间;(Ⅱ)设,求证:;(Ⅲ)若对于恒成立,求的最大值.18.(12分)已知函数,,.函数的导函数在上存在零点.求实数的取值范围;若存在实数,当时,函数在时取得最大值,求正实数的最大值;若直线与曲线和都相切,且在轴上的截距为,求实数的值.19.(12分)已知函数.(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,,满足,证明:.20.(12分)已知函数.(1)求的极值;(2)若,且,证明:.21.(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.22.(10分)已知直线与抛物线交于两点.(1)当点的横坐标之和为4时,求直线的斜率;(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由可得,因为是边长为的正三角形,所以,故选A.2、B【解析】
将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,,,所以表面积.故选B项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题3、B【解析】
首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.4、C【解析】
作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.5、A【解析】
化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.6、B【解析】
求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令,则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.7、B【解析】
由题意首先确定导函数的符号,然后结合题意确定函数在区间和处函数的特征即可确定函数图像.【详解】函数在上可导,其导函数为,且函数在处取得极大值,当时,;当时,;当时,.时,,时,,当或时,;当时,.故选:【点睛】根据函数取得极大值,判断导函数在极值点附近左侧为正,右侧为负,由正负情况讨论图像可能成立的选项,是判断图像问题常见方法,有一定难度.8、D【解析】
取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【详解】取,,数列恒单调递增,且不存在最大值,故排除AB选项;由蛛网图可知,存在两个不动点,且,,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D.【点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.9、A【解析】
计算,再计算真子集个数得到答案.【详解】,故真子集个数为:.故选:.【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.10、D【解析】
根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.11、C【解析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得.当a<1时,,所以函数f(x)在单调递减,因为对区间内的任意实数,都有,所以,所以故a≥1,与a<1矛盾,故a<1矛盾.当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.所以因为对区间内的任意实数,都有,所以,所以即令,所以所以函数g(a)在(1,e)上单调递减,所以,所以当1≤a<e时,满足题意.当a时,函数f(x)在(0,1)单调递增,因为对区间内的任意实数,都有,所以,故1+1,所以故综上所述,a∈.故选C.点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.12、C【解析】
将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角,,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.14、【解析】
画图直观图可得该几何体为棱锥,再计算高求解体积即可.【详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:.故答案为:.【点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意15、【解析】
画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点、远地点离地面的距离大约分别是,,可得,解得,所以椭圆的离心率为.故答案为:.【点睛】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的关键,着重考查了推理与计算能力,属于基础题.16、2【解析】
设符合条件的点,由抛物线的定义可得,即可求解.【详解】设符合条件的点,则,所以符合条件的点有2个.故答案为:2【点睛】本题考查抛物线的定义的应用,考查抛物线的焦半径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).【解析】
(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;(Ⅲ)条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),,利用导数得其单调区间,进而求得最大值.【详解】(Ⅰ)当时,,则,所以,又因为,所以在上为增函数,因为,所以当时,,为增函数,当时,,为减函数,即函数的单调增区间为,单调减区间为;(Ⅱ),则令,则(1),,所以在区间上存在唯一零点,设零点为,则,且,当时,,当,,,所以函数在递减,在,递增,,由,得,所以,由于,,从而;(Ⅲ)因为对于恒成立,即对于恒成立,不妨令,因为,,所以的解为,则当时,,为增函数,当时,,为减函数,所以的最小值为,则,不妨令(a),,则(a),解得,所以当时,(a),(a)为增函数,当时,(a),(a)为减函数,所以(a)的最大值为,则的最大值为.【点睛】本题考查利用导数研究函数的单调性和最值,以及函数不等式恒成立问题的解法,意在考查学生等价转化思想和数学运算能力,属于较难题.18、;4;12.【解析】
由题意可知,,求导函数,方程在区间上有实数解,求出实数的取值范围;由,则,分步讨论,并利用导函数在函数的单调性的研究,得出正实数的最大值;设直线与曲线的切点为,因为,所以切线斜率,切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,求得,设,则,所以在上单调递增,最后求出实数的值.【详解】由题意可知,,则,即方程在区间上有实数解,解得;因为,则,①当,即时,恒成立,所以在上单调递增,不符题意;②当时,令,解得:,当时,,单调递增,所以不存在,使得在上的最大值为,不符题意;③当时,,解得:,且当时,,当时,,所以在上单调递减,在上单调递增,若,则在上单调递减,所以,若,则上单调递减,在上单调递增,由题意可知,,即,整理得,因为存在,符合上式,所以,解得,综上,的最大值为4;设直线与曲线的切点为,因为,所以切线斜率,即切线方程整理得:由题意可知,,即,即,解得所以切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,消去,整理得,且因为,解得,设,则,所以在上单调递增,因为,所以,所以,即.【点睛】本题主要考查导数在函数中的研究,导数的几何意义,属于难题.19、(1)(2)见解析【解析】
(1)分离得到,求的最小值即可求得的取值范围;(2)先求出,得到,利用乘变化即可证明不等式.【详解】解:(1)设,∴在上单调递减,在上单调递增.故.∵有解,∴.即的取值范围为.(2),当且仅当时等号成立.∴,即.∵.当且仅当,,时等号成立.∴,即成立.【点睛】此题考查不等式的证明,注意定值乘变化的灵活应用,属于较易题目.20、(1)极大值为;极小值为;(2)见解析【解析】
(1)对函数求导,进而可求出单调性,从而可求出函数的极值;(2)构造函数,求导并判断单调性可得,从而在上恒成立,再结合,,可得到,即可证明结论成立.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全自动果蔬解毒清洗机项目可行性研究报告
- 2024年中国冻干西兰花蕾市场调查研究报告
- 2024年度建筑项目绿化景观合同3篇
- 2024年度服装行业环保生产标准合同2篇
- 高空喷涂二零二四年度租赁合同2篇
- 2024年度福州市二手房买卖合同样本6篇
- 2024年度物业管理合同详解2篇
- 退租房合同范本共
- 2024版混凝土框架结构钢筋绑扎施工合同
- 2024年钯金、钯银、膜材料项目资金需求报告代可行性研究报告
- 新编实用英语(第四版)视听说基础教程Shehaslonghair
- 综采工作面安装风险辨识报告
- 农村自建房安全管理与控制措施
- 高处坠落事故预防安全教育培训试题及答案
- DB42T2020-2023河道疏浚砂综合利用实施方案编制导则
- 《失去》写作指导
- 人教版PEP四年级英语上册第五单元Dinners-ready第二课时教案
- 2023年工业固体废物规范化培训课件-固废相关法律的更新
- 仓库物料的先进先出(FIFO)管理培训如何做到先进先出
- 小学四年级上册期中家长会课件
- GJB9001C质量手册+程序文件+记录清单
评论
0/150
提交评论