江西省贵溪市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】_第1页
江西省贵溪市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】_第2页
江西省贵溪市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】_第3页
江西省贵溪市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】_第4页
江西省贵溪市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页江西省贵溪市2024-2025学年数学九上开学教学质量检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,四边形中,,,,点,分别为线段,上的动点(含端点,但点不与点重合),点,分别为,的中点,则长度的最大值为()A.8 B.6 C.4 D.52、(4分)点P(﹣1,2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2)3、(4分)下面各问题中给出的两个变量x,y,其中y是x的函数的是①x是正方形的边长,y是这个正方形的面积;②x是矩形的一边长,y是这个矩形的周长;③x是一个正数,y是这个正数的平方根;④x是一个正数,y是这个正数的算术平方根.A.①②③ B.①②④ C.②④ D.①④4、(4分)下列说法正确的是()A.两个全等三角形是特殊的位似图形 B.两个相似三角形一定是位似图形C.位似图形的面积比与周长比都和相似比相等 D.位似图形不可能存在两个位似中心5、(4分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30° B.36° C.54° D.72°6、(4分)如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为()A.3 B.2 C.2 D.7、(4分)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40° B.36° C.30° D.25°8、(4分)目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=389二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)铁路部门规定旅客免费携行李箱的长宽高之和不超过,某厂家生产符合该规定的行李箱,已知行李箱的高为,长与宽之比为,则该行李箱宽度的最大值是_______.10、(4分)如图,在四边形ABCD中,∠A=90°,M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),E、F分别为DM,MN的中点,若AB=23, 11、(4分)已知a=b﹣2,则代数式的值为_____.12、(4分)如图,有Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为.13、(4分)已知函数y=-3x的图象经过点A(1,y1),点B(﹣2,y2),则y1_____y2(填“>”“<”或“=”)三、解答题(本大题共5个小题,共48分)14、(12分)计算:(1)(2)15、(8分)定义:有三个角相等的四边形叫做三等角四边形.(1)在三等角四边形中,,则的取值范围为________.(2)如图①,折叠平行四边形,使得顶点、分别落在边、上的点、处,折痕为、.求证:四边形为三等角四边形;(3)如图②,三等角四边形中,,若,,,则的长度为多少?16、(8分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,(1)求∠EAF的度数;(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ND2;(3)在图②中,若AG=12,BM=,直接写出MN的值.17、(10分)如图,正方形的边长为6,菱形的三个顶点,,分别在正方形的边,,上,且,连接.(1)当时,求证:菱形为正方形;(2)设,试用含的代数式表示的面积.18、(10分)(1)请计算一组数据的平均数;(2)一组数据的众数为,请计算这组数据的方差;(3)用适当的方法解方程.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是_____.20、(4分)当m=____时,关于x的分式方程无解.21、(4分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为__________.22、(4分)在关系式V=31-2t中,V随着t的变化而变化,其中自变量是_____,因变量是_____,当t=_____时,V=1.23、(4分)如图,将正方形放在平面直角坐标系中,是坐标原点,点的坐标为,则点的坐标为__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面内,菱形ABCD的对角线相交于点O,点O又是菱形B1A1OC1的一个顶点,菱形ABCD≌菱形B1A1OC1,AB=BD=1.菱形B1A1OC1绕点O转动,求两个菱形重叠部分面积的取值范围,请说明理由.25、(10分)在平面直角坐标系中,ΔABC的位置如图所示.点A,B,C的坐标分别为(-3,-3),(-1,-1),(0,-2),根据下面要求完成解答.(1)作ΔABC关于点C成中心对称的ΔA(2)将ΔA1B1C(3)在x轴上求作一点P,使PA2+P26、(12分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据三角形中位线定理可知,求出的最大值即可.【详解】如图,连结,,,,当点与点重合时,的值最大即最大,在中,,,,,的最大值.故选:.本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.2、A【解析】

解:根据关于y轴对称,横坐标互为相反数,纵坐标不变.故应选A考点:关于x轴、y轴对称的点的坐标3、D【解析】

根据题意对各选项分析列出表达式,然后根据函数的定义分别判断即可得解.【详解】解:①、y=x2,y是x的函数,故①正确;②、x是矩形的一边长,y是这个矩形的周长,无法列出表达式,y不是x的函数,故②错误;③、y=±,每一个x的值对应两个y值,y不是x的函数,故③错误;

④、y=,每一个x的值对应一个y值,y是x的函数,故④正确.

故选D.本题考查函数的概念,准确表示出各选项中的y、x的关系是解题的关键.4、D【解析】

根据位似图形的定义与性质对各个选项进行判断即可.【详解】A.全等三角形是特殊的相似三角形,其相似比为1,但是两个全等三角形不一定对应顶点的连线相交于一点,对应边互相平行,故本选项错误,

B.两个位似三角形的对应顶点的连线一定相交于一点,对应边一定互相平行,而相似三角形只要求形状相同、大小不等,并没有位置上的特殊要求,故本选项错误,C.位似图形的面积的比等于相似比的平方,周长的比等于相似比,故本选项错误,

D.两个位似图形不仅是相似图形,而且对应顶点的连线相交于一点,这一点是唯一的,

故本选项正确.故选D.本题主要考查位似图形的定义与性质,1.位似图形对应线段的比等于相似比;2.位似图形的对应角都相等;3.位似图形对应点连线的交点是位似中心;4.位似图形面积的比等于相似比的平方;5.位似图形高、周长的比都等于相似比;6.位似图形对应边互相平行或在同一直线上.5、B【解析】

在等腰三角形△ABE中,求出∠A的度数即可解决问题.【详解】解:在正五边形ABCDE中,∠A=×(5-2)×180=108°

又知△ABE是等腰三角形,

∴AB=AE,

∴∠ABE=(180°-108°)=36°.

故选B.本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.6、D【解析】

作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,在直角三角形BDF中,BF=BC+CF=1+1=2,根据勾股定理得:BD=,故选D.本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.7、B【解析】

根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【详解】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,设∠B=α,则∠BDA=∠BAD=2α,又∵∠B+∠BAD+∠BDA=180°,∴α+2α+2α=180°,∴α=36°,即∠B=36°,故选:B.本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.8、B【解析】

解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389(1+x)元,则今年上半年发放给每个经济困难学生389(1+x)(1+x)=389(1+x)2元.据此,由题设今年上半年发放了1元,列出方程:389(1+x)2=1.故选B.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.【详解】解:设长为3x,宽为2x,由题意,得:5x+20≤160,解得:x≤28,故行李箱宽度的最大值是28×2=56cm.故答案为:56cm.本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系,建立不等式.10、1【解析】

连接BD、DN,根据勾股定理求出BD,根据三角形中位线定理解答.【详解】解:连接BD、DN,在RtΔABD中,∵点E、F分别为DM、MN的中点,∴EF=1由题意得,当点N与点B重合时,DN最大,∴DN的最大值是4,∴EF长度的最大值是1,故答案为:1.本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.11、1【解析】

由已知等式得出,代入到原式计算可得答案.【详解】解:,故答案为:1.本题主要考查了完全平方的运算,其中熟练掌握完全平方公式是解题的关键.12、【解析】试题分析:根据勾股定理即可求得结果.由题意得,正方形M与正方形N的面积之和为考点:本题考查的是勾股定理点评:解答本题的关键是根据勾股定理得到最大正方形的面积等于正方形M、N的面积和.13、<.【解析】

分别把点A(-1,y1),点B(-2,y2)代入函数y=-3x,求出y1,y2的值,并比较出其大小即可.【详解】∵点A(-1,y1),点B(-2,y2)是函数y=-3x上的点,∴y1=3,y2=6,∵6>3,∴y2>y1.考点:一次函数图象上点的坐标特征.三、解答题(本大题共5个小题,共48分)14、(1)14;(2)【解析】

(1)先根据二次根式的性质把各个根式化成最简二次根式,再合并同类二次根式即可.(2)根据多项式乘以多项式的运算法则计算即可.【详解】解:(1)原式===14(2)原式==本题考查了二次根式的性质和多项式与多项式相乘,解题的关键是准确的化简二次根式,以及掌握乘法运算法则.15、(1);(2)见解析;(3)的长度为.【解析】

(1)根据四边形的内角和是360°,确定出∠BAD的范围;(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC即可;(3)延长BA,过D点作DG⊥BA,继续延长BA,使得AG=EG,连接DE;延长BC,过D点作DH⊥BC,继续延长BC,使得CH=HF,连接DF,由SAS证明△DEG≌△DAG,得出AD=DE=,∠DAG=∠DEA,由SAS证明△DFH≌△DCH,得出CD=DF=6,∠DCH=∠DFH,证出DE∥BF,BE∥DF,得出四边形DEBF是平行四边形,得出DF=BE=6,DE=BF=,由等腰三角形的性质得出EG=AG=(BE-AB)=1,在Rt△DGA中,由勾股定理求出DG==4,由平行四边形DEBF的面积求出,在Rt△DCH中,由勾股定理求出,即可得出BC的长度.【详解】(1)∵∴∴∵∴∴故答案为:(2)证明:∵四边形为平行四边形,∴,∴∵,∴∵,,∴∴四边形是三等角四边形;(3)延长,过点作,继续延长,使得,连接;延长,过点作,继续延长,使得,连接,如图所示:在和中,∴,∴,同理可得,∴,∵∴,∴,∴四边形是平行四边形,∴,,∴在中,∵平行四边形的面积,即:∴在中,∴故答案为:的长度为.本题是四边形综合题目,考查了三等角四边形的判定与性质,翻折变换-折叠问题,四边形的内角和定理,平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形全等和运用勾股定理是解决问题的关键.16、(1)45°;(2)证明见解析;(3).【解析】

(1)∵正方形ABCD,AG⊥EF,∴AG=AB,∠ABE=∠AGE=∠BAD=90°,AE=AE,∴Rt△ABE≌Rt△AGE,∴∠BAE=∠GAE,同理Rt△ADF≌Rt△AGF,∴∠GAF=∠DAF,∴∠EAF=∠BAD=45°;(2)证明:由旋转知,∠BAH=∠DAN,AH=AN,∵∠BAD=90°,∠EAF=45°,∴∠BAM+∠DAN=45°,∴∠HAM=∠BAM+∠BAH=∠BAM+∠DAN=45°,∴∠HAM=∠NAM,AM=AM,∴△AHM≌△ANM,∴MN=MH,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°由旋转知,∠ABH=∠ADB=45°,HB=ND,∴∠HBM=∠ABH+∠ABD=90°,∴,∴;(3).以下解法供参考∵,∴;在(2)中,设,则.∴.即.17、(1)见解析;(2).【解析】

(1)根据已知条件可证明,再通过等量代换即可得出,继而证明结论;(2)过点作,交的延长线于点,连接,再证明,得出,进而可求得答案.【详解】解:(1)∵四边形是正方形,∴,∵四边形是菱形,∴.∵,∴∴,∴∴,∴菱形为正方形.(2)如图,过点作,交的延长线于点,连接,∵,∴,∵,∴∴在和中,∴∴∵,∴∴本题考查了正方形的性质、菱形的判定及性质、勾股定理,会利用数形结合的思想解题,能够正确的作出辅助项是解此题的关键.18、(1)4;(2);(3)【解析】

(1)根据算数平均数公式求解即可;(2)根据众数的概念求得x的值,然后利用方差公式计算进行即可;(3)用因式分解法解一元二次方程.【详解】解:(1)∴这组数据的平均数为4;(2)由题意可知:x=2∴∴这组数据的方差为;(3)或∴本题考查平均数,众数,方差的概念及计算,考查因式分解法解一元二次方程,掌握相关概念和公式,正确计算是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、()n﹣1【解析】

根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【详解】∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形AnBnCnDn的面积=()n﹣1,故答案为()n﹣1.本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.20、-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.21、9【解析】设每轮传染中平均一个人传染的人数为x人,那么由题意可知(1+x)2=100,解得x=9或-11x=-11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人22、tV15【解析】∵在关系式V=31-2t中,V随着t的变化而变化,∴在关系式V=31-2t中,自变量是;因变量是;在V=31-2t中,由可得:,解得:,∴当时,.故答案为(1);(2);(3)15.23、【解析】

过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,根据同角的余角相等求出∠OEI=∠GOH,再利用“角角边”证明△EOI和△OGH全等,根据全等三角形对应边相等可得OH=EI,EI=OI,然后根据点G在第二象限写出坐标即可.【详解】解:过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,如图所示:∵四边形OEFG是正方形,∴OE=OG,∠EOG=90°,∴∠GOH+∠EOI=90°,又∵∠OEI+∠EOI=90°,∴∠OEI=∠GOH,在△EOI和△OGH中,,∴△EOI≌△OGH(AAS),∴OH=EI=3,GH=OI=2,∵点G在第二象限,∴点G的坐标为(-3,2).故答案为(-3,2).本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.二、解答题(本大题共3个小题,共30分)24、≤s.【解析】

分别求出重叠部分面积的最大值,最小值即可解决问题【详解】如图1中,∵四边形ABCD是菱形,∴AB=AD,∵AB=BD,∴AB=BD=AD=1,∴△ABD是等边三角形,当AE=EB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论