![湖南省邵阳市2025届高一数学第一学期期末质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M01/0F/36/wKhkGWcehbyAHT8yAAF42w44vUU915.jpg)
![湖南省邵阳市2025届高一数学第一学期期末质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M01/0F/36/wKhkGWcehbyAHT8yAAF42w44vUU9152.jpg)
![湖南省邵阳市2025届高一数学第一学期期末质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M01/0F/36/wKhkGWcehbyAHT8yAAF42w44vUU9153.jpg)
![湖南省邵阳市2025届高一数学第一学期期末质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M01/0F/36/wKhkGWcehbyAHT8yAAF42w44vUU9154.jpg)
![湖南省邵阳市2025届高一数学第一学期期末质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M01/0F/36/wKhkGWcehbyAHT8yAAF42w44vUU9155.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市2025届高一数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,以为最小正周期且在区间上单调递减的是()A. B.C. D.2.函数,则f(log23)=()A.3 B.6C.12 D.243.已知函数,,其中,若,,使得成立,则()A. B.C. D.4.已知函数的部分图像如图所示,则正数A值为()A. B.C. D.5.把11化为二进制数为A. B.C. D.6.若,则角终边所在象限是A.第一或第二象限 B.第一或第三象限C.第二或第三象限 D.第三或第四象限7.为了得到函数的图象,只需将函数图象上所有的点A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度8.已知指数函数在上单调递增,则实数的值为()A. B.1C. D.29.函数y=1g(1-x)+的定义域是()A. B.C. D.10.若函数在上是增函数,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C. D.-112.某种商品在第天的销售价格(单位:元)为,第x天的销售量(单位:件)为,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元.13.比较大小:________.14.某房屋开发公司用14400万元购得一块土地,该地可以建造每层的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层整幢楼房每平方米建筑费用提高640元.已知建筑5层楼房时,每平方米建筑费用为8000元,公司打算造一幢高于5层的楼房,为了使该楼房每平米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成____________层,此时,该楼房每平方米的平均综合费用最低为____________元15.已知是定义在上的偶函数,且当时,,则当时,___________.16.函数的定义域是________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,几何体EF-ABCD中,四边形CDEF是正方形,四边形ABCD为直角梯形,AB∥CD,AD⊥DC,△ACB是腰长为2的等腰直角三角形,平面CDEF⊥平面ABCD(1)求证:BC⊥AF;(2)求几何体EF-ABCD的体积18.已知函数(1)若是偶函数,求a值;(2)若对任意,不等式恒成立,求a的取值范围19.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为万元和万元(如图).(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?20.函数的定义域且,对定义域D内任意两个实数,,都有成立(1)求的值并证明为偶函数;21.已知向量,,设函数=+(1)求函数的最小正周期和单调递增区间;(2)当时,求函数的值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据正弦、余弦、正切函数的周期性和单调性逐一判断即可得出答案.【详解】解:对于A,函数的最小正周期为,不符合题意;对于B,函数的最小正周期为,且在区间上单调递减,符合题意;对于C,函数的最小正周期为,且在区间上单调递增,不符合题意;对于D,函数的最小正周期为,不符合题意.故选:B.2、B【解析】由对数函数的性质可得,再代入分段函数解析式运算即可得解.【详解】由题意,,所以.故选:B.3、B【解析】首先已知等式变形为,构造两个函数,,问题可转化为这两个函数的值域之间的包含关系【详解】∵,,∴,又,∴,∴由得,,设,,则,,,∴的值域是值域的子集∵,时,,显然,(否则0属于的值域,但)∴,∴(*)由上讨论知同号,时,(*)式可化为,∴,,当时,(*)式可化为,∴,无解综上:故选:B【点睛】本题考查函数恒成立问题,解题关键是掌握转化与化归思想.首先是分离两个变量,然后构造新函数,问题转化为两个函数值域之间的包含关系.其次通过已知关系确定函数值域的形式(或者参数的一个范围),在这个范围解不等式才能非常简单地求解4、B【解析】根据图象可得函数的周期,从而可求,再根据对称轴可求,结合图象过可求.【详解】由图象可得,故,而时,函数取最小值,故,故,而,故,因为图象过,故,故,故选:B.5、A【解析】11÷2=5…15÷2=2…12÷2=1…01÷2=0…1故11(10)=1011(2)故选A.6、D【解析】利用同角三角函数基本关系式可得,结合正切值存在可得角终边所在象限【详解】,且存在,角终边所在象限是第三或第四象限故选D【点睛】本题考查三角函数的象限符号,是基础题7、B【解析】根据诱导公式将函数变为正弦函数,再减去得到.【详解】函数又故将函数图像上的点向右平移个单位得到故答案为:B.【点睛】本题考查的是三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.8、D【解析】解方程即得或,再检验即得解.【详解】解:由题得或.当时,上单调递增,符合题意;当时,在上单调递减,不符合题意.所以.故选:D9、B【解析】可看出,要使得原函数有意义,则需满足解出x的范围即可【详解】要使原函数有意义,则:解得-1≤x<1;∴原函数的定义域是[-1,1)故选B【点睛】本题主要考查函数定义域的概念及求法,考查对数函数的定义域和一元二次不等式的解法.意在考查学生对这些知识的理解掌握水平.10、B【解析】令,则可得,解出即可.【详解】令,其对称轴为,要使在上是增函数,则应满足,解得.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、D【解析】设平均增长率为x,由题得故填.12、①.448②.600【解析】销售价格与销售量相乘即得收入,对分段函数,可分段求出最大值,然后比较【详解】由题意可得(元),即第14天该商品的销售收入为448元.销售收入,,即,.当时,,故当时,y取最大值,,当时,易知,故当时,该商品日销售收入最大,最大值为600元.故答案为:448;600.【点睛】本题考查分段函数模型的应用.根据所给函数模型列出函数解析式是基本方法13、<【解析】利用诱导公式,将角转化至同一单调区间,根据单调性,比较大小.【详解】,,又在内单调递增,由所以,即<.故答案为:<.【点睛】本题考查了诱导公式,利用单调性比较正切值的大小,属于基础题.14、①.15②.24000【解析】设公司应该把楼建成层,可知每平方米的购地费用,已知建筑5层楼房时,每平方米建筑费用为8000元,从中可得出建层的每平方米的建筑费用,然后列出式子求得其最小值,从而可求得答案【详解】设公司应该把楼建成层,则由题意得每平方米购地费用为(元),每平方米的建筑费用为(元),所以每平方米的平均综合费用为,当且仅当,即时取等号,所以公司应把楼层建成15层,此时,该楼房每平方米的平均综合费用最低为24000元,故答案为:15,2400015、【解析】设,则,求出的表达式,再由即可求解.【详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.16、,【解析】根据题意由于有意义,则可知,结合正弦函数的性质可知,函数定义域,,,故可知答案为,,,考点:三角函数性质点评:主要是考查了三角函数的性质的运用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】(1)推导出FC⊥CD,FC⊥BC,AC⊥BC,由此BC⊥平面ACF,从而BC⊥AF(2)推导出AC=BC=2,AB4,从而AD=BCsin∠ABC=22,由V几何体EF﹣ABCD=V几何体A﹣CDEF+V几何体F﹣ACB,能求出几何体EF﹣ABCD的体积【详解】(1)因为平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,又四边形CDEF是正方形,所以FC⊥CD,FC⊂平面CDEF,所以FC⊥平面ABCD,所以FC⊥BC因为△ACB是腰长为2的等腰直角三角形,所以AC⊥BC又AC∩CF=C,所以BC⊥平面ACF所以BC⊥AF(2)因为△ABC是腰长为2的等腰直角三角形,所以AC=BC=2,AB==4,所以AD=BCsin∠ABC=2=2,CD=AB=BCcos∠ABC=4-2cos45°=2,∴DE=EF=CF=2,由勾股定理得AE==2,因为DE⊥平面ABCD,所以DE⊥AD又AD⊥DC,DE∩DC=D,所以AD⊥平面CDEF所以V几何体EF-ABCD=V几何体A-CDEF+V几何体F-ACB==+==【点睛】本题考查线线垂直的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题18、(1)0(2)【解析】(1)由偶函数的定义得出a的值;(2)由分离参数得,利用换元法得出的最小值,即可得出a的取值范围【小问1详解】因为是偶函数,所以,即,故【小问2详解】由题意知在上恒成立,则,又因为,所以,则.令,则,可得,又因为,当且仅当时,等号成立,所以,即a的取值范围是19、(1)投资债券,投资股票;(2)投资债券类产品万元,股票类投资为4万元,收益最大值为万元.【解析】(1)设函数解析式,,代入即可求出的值,即可得函数解析式;(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元,则,代入解析式,换元求最值即可.【详解】(1)设.由题意可得:,,所以,,(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元依题意得即.令则,则所以当即时,收益最大为万元,所以投资债券类产品万元,股票类投资为4万元,收益最大值为万元.20、(1),证明见解析(2)(3)【解析】(1)取得到,取得到,取得到,得到答案.(2)证明函数在上单调递增,在上单调递减,得到,结合定义域得到答案.(3)根据函数单调性和奇偶性得到,考虑,,三种情况,得到函数的最值,解不等式得到答案.【小问1详解】取得到,得到,取得到,得到,取得到,即,故函数为偶函数.【小问2详解】设,则,,故,即,函数单调递减.函数为偶函数,故函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 报纸新闻的都市新闻深度报道解读考核试卷
- 石油化工行业数字化转型投资合同
- 塑料管材的超声波焊接技术考核试卷
- 高科技领域创新研发合作合同书
- 体育设施扩展与搬迁考核试卷
- 丹麦智能家居市场机会预测报告考核试卷
- 建筑陶瓷户外装饰技术应用考核试卷
- 宠物药品的宠物主人健康需求满足与市场开发考核试卷
- 建筑工程设计与咨询服务合同
- 多方投资成立共享服务中心合同
- 深圳市物业专项维修资金管理系统操作手册(电子票据)
- 2023年铁岭卫生职业学院高职单招(数学)试题库含答案解析
- 电力安全工作规程(电网建设部分)2023年
- 呆死帐的发生与预防课件
- 10000中国普通人名大全
- 起重机械安装吊装危险源辨识、风险评价表
- 华北理工儿童口腔医学教案06儿童咬合诱导
- 中国建筑项目管理表格
- 高一3班第一次月考总结班会课件
- 公共政策分析导论教学课件汇总完整版电子教案
- 我国油菜生产机械化技术(-119)
评论
0/150
提交评论