2025届巴中市重点中学高二数学第一学期期末监测试题含解析_第1页
2025届巴中市重点中学高二数学第一学期期末监测试题含解析_第2页
2025届巴中市重点中学高二数学第一学期期末监测试题含解析_第3页
2025届巴中市重点中学高二数学第一学期期末监测试题含解析_第4页
2025届巴中市重点中学高二数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届巴中市重点中学高二数学第一学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则与的大小关系是()A. B.C. D.不能确定2.等差数列中,是的前项和,,则()A.40 B.45C.50 D.553.若直线与互相平行,且过点,则直线的方程为()A. B.C. D.4.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.16030.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26C.0.56 D.0.745.已知,,若,则实数的值为()A. B.C. D.6.已知,,直线:,:,且,则的最小值为()A.2 B.4C.8 D.97.已知函数,则()A.3 B.C. D.8.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.函数的图像大致是()A B.C. D.10.七巧板是中国古代劳动人民发明的一种传统智力玩具,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中随机地取一点,则该点恰好取自白色部分的概率为()A. B.C. D.11.已知圆与圆相交于A、B两点,则圆上的动点P到直线AB距离的最大值为()A. B.C. D.12.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过椭圆上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.14.已知空间向量,,且,则值为______15.过圆上一点的圆的切线的一般式方程为________16.若方程表示的曲线是圆,则实数的k取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和,且(1)证明:数列为等差数列;(2)设,记数列的前项和为,若,对任意恒成立,求实数的取值范围18.(12分)已知椭圆的离心率为,椭圆的上顶点到焦点的距离为.(1)求椭圆的方程;(2)若直线与椭圆相交于、两点(、不是左、右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点.19.(12分)在①,②,③,三个条件中任选一个,补充在下面的问题中,并解答.设数列是公比大于0的等比数列,其前项和为,数列是等差数列,其前项和为.已知,,,_____________.(1)请写出你选择条件的序号____________;并求数列和的通项公式;(2)求和.20.(12分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.21.(12分)设点P是曲线上的任意一点,k是该曲线在点P处的切线的斜率(1)求k的取值范围;(2)求当k取最大值时,该曲线在点P处的切线方程22.(10分)“中山桥”是位于兰州市中心,横跨黄河之上的一座百年老桥,如图①,桥上有五个拱形桥架紧密相连,每个桥架的内部有一个水平横梁和八个与横梁垂直的立柱,气势宏伟,素有“天下黄河第一桥”之称.如图②,一个拱形桥架可以近似看作是由等腰梯形和其上方的抛物线(部分)组成,建立如图所示的平面直角坐标系,已知,,,,立柱.(1)求立柱及横梁的长;(2)求抛物线的方程和桥梁的拱高.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题知,进而研究的符号即可得答案.详解】解:,所以,即.故选:B2、B【解析】应用等差数列的性质“若,则”即可求解【详解】故选:B3、D【解析】由题意设直线的方程为,然后将点代入直线中,可求出的值,从而可得直线的方程【详解】因为直线与互相平行,所以设直线的方程为,因为直线过点,所以,得,所以直线的方程为,故选:D4、D【解析】利用互斥事件概率计算公式直接求解【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:故选:D【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题5、A【解析】由,得,从而可得答案.【详解】解:因为,所以,即,解得.故选:A.6、C【解析】由,可求得,再由,利用基本不等式求出最小值即可.【详解】因为,所以,即,因为,,所以,当且仅当,即时等号成立,所以的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式求最值,考查学生的计算求解能力,属于中档题.7、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B8、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.9、B【解析】由函数有两个零点排除选项A,C;再借助导数探讨函数的单调性与极值情况即可判断作答.【详解】由得,或,选项A,C不满足;由求导得,当或时,,当时,,于是得在和上都单调递增,在上单调递减,在处取极大值,在处取极小值,D不满足,B满足.故选:B10、A【解析】设七巧板正方形边长为4,求出阴影部分的面积,再利用几何概型概率公式计算作答.【详解】设七巧板正方形边长为4,则大阴影等腰三角形底边长为4,底边上的高为2,可得小正方形对角线长为2,小正方形边长为,小阴影等腰直角三角形腰长为,小白色等腰直角三角形底边长为2,则左上角阴影等腰直角三角形腰长为2,因此,图中阴影部分面积,而七巧板正方形面积,于是得七巧板中白色部分面积为,所以在此正方形中随机地取一点,则该点恰好取自白色部分的概率为.故选:A11、A【解析】判断圆与的位置并求出直线AB方程,再求圆心C到直线AB距离即可计算作答.【详解】圆的圆心,半径,圆的圆心,半径,,,即圆与相交,直线AB方程为:,圆的圆心,半径,点C到直线AB距离的距离,所以圆C上的动点P到直线AB距离的最大值为.故选:A12、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】相关点法求解轨迹方程.【详解】设,则,则,即,因为,代入可得,即的轨迹方程为.故答案为:14、【解析】利用向量的坐标运算及向量数量积的坐标表示即求.【详解】由题意,空间向量,可得,所以,解得.故答案为:.15、【解析】求出过切线的半径所在直线斜率,由垂直关系得切线斜率,然后得直线方程,现化为一般式【详解】圆心为,,所以切线的斜率为,切线方程为,即故答案为:【点睛】本题考查求过圆上一点的圆的切线方程,利用切线性质求得斜率后易得直线方程16、【解析】根据二元二次方程表示圆的条件求解【详解】由题意,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用可得答案;(2)利用错位相减可得,转化为对任意,恒成立,求出的最大值可得答案小问1详解】当时,由,得或(舍去),由,得,①当时,,②由①-②,得,整理得,因为,所以所以是首项为1,公差为1的等差数列【小问2详解】由(1)可得,所以,③,④由③-④,得,即,由得,所以,即,该式对任意恒成立,因此,所以的取值范围是18、(1);(2)证明见解析.【解析】(1)根据已知条件求出、、的值,可得出椭圆的标准方程;(2)设、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出关于、所满足的等式,然后化简直线的方程,即可求得直线所过定点的坐标.【小问1详解】解:椭圆上顶点到焦点距离,又椭圆离心率为,故,,因此,椭圆方程为.【小问2详解】解:设、,由题意可知且,椭圆的右顶点为,则,,因为以为直径的圆过椭圆的右顶点,所以有,则,即,联立,,即,①由韦达定理得,,所以,,化简得,即或,均满足①式.当时,直线,恒过定点,舍去;当时,直线,恒过定点.综上所述,直线过定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点,常利用直线的点斜式方程或截距式来证明.19、(1)选①,,;选②,,;选③,,;(2),【解析】(1)选条件①根据等比数列列出方程求出公比得通项公式,再由等差数列列出方程求出首项与公差可得通项公式,选②③与①相同的方法求数列的通项公式;(2)根据等比数列、等差数列的求和公式解计算即可.【小问1详解】选条件①:设等比数列的公比为q,,,解得或,,,.设等差数列的公差为d,,,解得,,.选条件②:设等比数列的公比为q,,,解得或,,,.设等差数列的公差为,,,解得,,选条件③:设等比数列的公比为,,,解得或,,,.设等差数列的公差为,,,解得,【小问2详解】由(1)知,,20、(1)证明见解析(2)证明见解析【解析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2)由已知可得AB⊥BC,VC⊥AC,再由已知结合面面垂直的性质定理可得VC⊥平面ABC,从而有AB⊥VC,然后由线面垂直的判定定理可证得结论【小问1详解】证明:∵M,N分别为VA,VB的中点,∴MN∥AB,∵AB⊄平面CMN,MN⊂平面CMN,∴AB∥平面CMN【小问2详解】证明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB⊂平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC21、(1)(2)【解析】(1)先求导数再求最值即可求解答案;(2)由(1)确定切点,从而也确定的斜率就可以求切线.【小问1详解】设,因为,所以,所以k的取值范围为【小问2详解】由(1)知,此时,即,所以此时曲线在点P处的切线方程为22、(1),(2),【解析】(1)根据梯形的几何性质,即可求解;(2)表示出M,N的坐标,代入抛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论