新疆哈密地区第二中学2025届高三数学第一学期期末考试试题含解析_第1页
新疆哈密地区第二中学2025届高三数学第一学期期末考试试题含解析_第2页
新疆哈密地区第二中学2025届高三数学第一学期期末考试试题含解析_第3页
新疆哈密地区第二中学2025届高三数学第一学期期末考试试题含解析_第4页
新疆哈密地区第二中学2025届高三数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆哈密地区第二中学2025届高三数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆心为且和轴相切的圆的方程是()A. B.C. D.2.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件3.已知函数,则下列结论错误的是()A.函数的最小正周期为πB.函数的图象关于点对称C.函数在上单调递增D.函数的图象可由的图象向左平移个单位长度得到4.设,,则()A. B. C. D.5.已知函数,则()A.函数在上单调递增 B.函数在上单调递减C.函数图像关于对称 D.函数图像关于对称6.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.27.()A. B. C. D.8.下列说法正确的是()A.“若,则”的否命题是“若,则”B.“若,则”的逆命题为真命题C.,使成立D.“若,则”是真命题9.若复数是纯虚数,则实数的值为()A.或 B. C. D.或10.已知为虚数单位,复数,则其共轭复数()A. B. C. D.11.的内角的对边分别为,若,则内角()A. B. C. D.12.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足,则,_____.若存在n∈N*使得成立,则实数λ的最小值为______14.甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为______.15.如图,在菱形ABCD中,AB=3,,E,F分别为BC,CD上的点,,若线段EF上存在一点M,使得,则____________,____________.(本题第1空2分,第2空3分)16.若函数,则__________;__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.18.(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.(1)求证:是的中点;(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.19.(12分)已知在中,角、、的对边分别为,,,,.(1)若,求的值;(2)若,求的面积.20.(12分)超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n()份血液样本,每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验n次;(2)混合检验,将其中k(且)份血液样本分别取样混合在一起检验,若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为次,假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p().(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;(2)现取其中k(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.(i)试运用概率统计的知识,若,试求p关于k的函数关系式;(ii)若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:,,,,21.(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:22.(10分)已知,,,,证明:(1);(2).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.2、A【解析】

首先利用二倍角正切公式由,求出,再根据充分条件、必要条件的定义判断即可;【详解】解:∵,∴可解得或,∴“”是“”的充分不必要条件.故选:A【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题.3、D【解析】

由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,,所以B正确;当时,,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.4、D【解析】

集合是一次不等式的解集,分别求出再求交集即可【详解】,,则故选【点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题.5、C【解析】

依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【详解】解:由,,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.6、B【解析】

首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.7、A【解析】

分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A【点睛】本题考查复数的除法运算,属于基础题.8、D【解析】选项A,否命题为“若,则”,故A不正确.选项B,逆命题为“若,则”,为假命题,故B不正确.选项C,由题意知对,都有,故C不正确.选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.选D.9、C【解析】试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.考点:纯虚数10、B【解析】

先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【详解】由,所以其共轭复数.故选:B.【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.11、C【解析】

由正弦定理化边为角,由三角函数恒等变换可得.【详解】∵,由正弦定理可得,∴,三角形中,∴,∴.故选:C.【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键.12、B【解析】由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用“退一作差法”求得数列的通项公式,将不等式分离常数,利用商比较法求得的最小值,由此求得的取值范围,进而求得的最小值.【详解】当时两式相减得所以当时,满足上式综上所述存在使得成立的充要条件为存在使得,设,所以,即,所以单调递增,的最小项,即有的最小值为.故答案为:(1).(2).【点睛】本小题主要考查根据递推关系式求数列的通项公式,考查数列单调性的判断方法,考查不等式成立的存在性问题的求解策略,属于中档题.14、【解析】

根据条件概率的求法,分别求得,再代入条件概率公式求解.【详解】根据题意得所以故答案为:【点睛】本题主要考查条件概率的求法,还考查了理解辨析的能力,属于基础题.15、【解析】

根据题意,设,则,所以,解得,所以,从而有.16、01【解析】

根据分段函数解析式,代入即可求解.【详解】函数,所以,.故答案为:0;1.【点睛】本题考查了分段函数求值的简单应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用切线与导数的关系得直线的斜率,进而可得与互补.【详解】(1)由题意设直线的方程为,令、,联立,得,根据抛物线的定义得,又,故所求抛物线方程为.(2)依题意,设,,设的方程为,与联立消去得,,同理,直线的斜率=切线的斜率,由,即与互补.【点睛】本题考查直线与抛物线的位置关系的综合应用,直线斜率的应用,考查分析问题解决问题的能力,属于中档题.18、(1)见解析;(2).【解析】试题分析:(1)连交于可得是中点,再根据面可得进而根据中位线定理可得结果;(2)取中点,由(1)知两两垂直.以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系,求出面的一个法向量,用表示面的一个法向量,由可得结果.试题解析:(1)证明:连交于,连是矩形,是中点.又面,且是面与面的交线,是的中点.(2)取中点,由(1)知两两垂直.以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系(如图),则各点坐标为.设存在满足要求,且,则由得:,面的一个法向量为,面的一个法向量为,由,得,解得,故存在,使二面角为直角,此时.19、(1)7(2)14【解析】

(1)在中,,可得,结合正弦定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【详解】(1)在中,,,,,,.(2),,,解得,.【点睛】本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.20、(1)(2)(i)(,且).(ii)最大值为4.【解析】

(1)设恰好经过2次检验能把阳性样本全部检验出来为事件A,利用古典概型、排列组合求解即可;(2)(i)由已知得,的所有可能取值为1,,则可求得,,即可得到,进而由可得到p关于k的函数关系式;(ii)由可得,推导出,设(),利用导函数判断的单调性,由单调性可求出的最大值【详解】(1)设恰好经过2次检验能把阳性样本全部检验出来为事件A,则,∴恰好经过两次检验就能把阳性样本全部检验出来的概率为(2)(i)由已知得,的所有可能取值为1,,,,,若,则,则,,,∴p关于k的函数关系式为(,且)(ii)由题意知,得,,,,设(),则,令,则,∴当时,,即在上单调增减,又,,,又,,,∴k的最大值为4【点睛】本题考查古典概型的概率公式的应用,考查随机变量及其分布,考查利用导函数判断函数的单调性21、(1);(2)详见解析.【解析】

(1)由短轴长可知,设,,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果【详解】解:(1)由已知,得由,两式相减,得根据已知条件有,当时,∴,即∴椭圆的标准方程为(2)当直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论