2024届辽宁省葫芦岛市实验中学高三4月(二诊)调研测试卷(康德版)数学试题_第1页
2024届辽宁省葫芦岛市实验中学高三4月(二诊)调研测试卷(康德版)数学试题_第2页
2024届辽宁省葫芦岛市实验中学高三4月(二诊)调研测试卷(康德版)数学试题_第3页
2024届辽宁省葫芦岛市实验中学高三4月(二诊)调研测试卷(康德版)数学试题_第4页
2024届辽宁省葫芦岛市实验中学高三4月(二诊)调研测试卷(康德版)数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省葫芦岛市实验中学高三4月(二诊)调研测试卷(康德版)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.2.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A. B. C. D.3.函数满足对任意都有成立,且函数的图象关于点对称,,则的值为()A.0 B.2 C.4 D.14.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.85.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.6.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或97.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8.若实数满足的约束条件,则的取值范围是()A. B. C. D.9.已知复数满足,其中为虚数单位,则().A. B. C. D.10.已知数列中,,(),则等于()A. B. C. D.211.设为等差数列的前项和,若,,则的最小值为()A. B. C. D.12.设全集为R,集合,,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若函数有6个零点,则实数的取值范围是_________.14.已知函数为奇函数,,且与图象的交点为,,…,,则______.15.已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是____.16.已知,,,且,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动圆经过点,且动圆被轴截得的弦长为,记圆心的轨迹为曲线.(1)求曲线的标准方程;(2)设点的横坐标为,,为圆与曲线的公共点,若直线的斜率,且,求的值.18.(12分)在平面直角坐标系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.19.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.20.(12分)在中,角所对的边分别为,若,,,且.(1)求角的值;(2)求的最大值.21.(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.22.(10分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养2、D【解析】

由题意得,再利用基本不等式即可求解.【详解】将平方得,(当且仅当时等号成立),,的最小值为,故选:D.【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.3、C【解析】

根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.4、B【解析】

根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.5、A【解析】

根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.6、C【解析】

由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题.7、D【解析】

结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.8、B【解析】

根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.9、A【解析】

先化简求出,即可求得答案.【详解】因为,所以所以故选:A【点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.10、A【解析】

分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:∵,(),

…,

∴数列是以3为周期的周期数列,

故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.11、C【解析】

根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最小值.【详解】依题意,解得,所以.由解得,所以前项和中,前项的和最小,且.故选:C【点睛】本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题.12、B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由题意首先研究函数的性质,然后结合函数的性质数形结合得到关于a的不等式,求解不等式即可确定实数a的取值范围.【详解】当时,函数在区间上单调递增,很明显,且存在唯一的实数满足,当时,由对勾函数的性质可知函数在区间上单调递减,在区间上单调递增,结合复合函数的单调性可知函数在区间上单调递减,在区间上单调递增,且当时,,考查函数在区间上的性质,由二次函数的性质可知函数在区间上单调递减,在区间上单调递增,函数有6个零点,即方程有6个根,也就是有6个根,即与有6个不同交点,注意到函数关于直线对称,则函数关于直线对称,绘制函数的图像如图所示,观察可得:,即.综上可得,实数的取值范围是.故答案为.【点睛】本题主要考查分段函数的应用,复合函数的单调性,数形结合的数学思想,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.14、18【解析】

由题意得函数f(x)与g(x)的图像都关于点对称,结合函数的对称性进行求解即可.【详解】函数为奇函数,函数关于点对称,,函数关于点对称,所以两个函数图象的交点也关于点(1,2)对称,与图像的交点为,,…,,两两关于点对称,.故答案为:18【点睛】本题考查了函数对称性的应用,结合函数奇偶性以及分式函数的性质求出函数的对称性是解决本题的关键,属于中档题.15、【解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.16、【解析】

由,先将变形为,运用基本不等式可得最小值,再求的最小值,运用函数单调性即可得到所求值.【详解】解:因为,,,且,所以因为,所以,当且仅当时,取等号,所以令,则,令,则,所以函数在上单调递增,所以所以则所求最小值为故答案为:【点睛】此题考查基本不等式的运用:求最值,注意变形和满足的条件:一正二定三相等,考查利用单调性求最值,考查化简和运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】

(1)设,则点到轴的距离为,因为圆被轴截得的弦长为,所以,又,所以,化简可得,所以曲线的标准方程为.(2)设,,因为直线的斜率,所以可设直线的方程为,由及,消去可得,所以,,所以.设线段的中点为,点的纵坐标为,则,,所以直线的斜率为,所以,所以,所以.易得圆心到直线的距离,由圆经过点,可得,所以,整理可得,解得或,所以或,又,所以.18、(1)(2).【解析】

(1)根据,由向量,的坐标直接计算即得;(2)先求出,再根据向量平行的坐标关系解得.【详解】(1)由题,向量,,则.(2),.,,整理得,化简得,即,,,,即.【点睛】本题考查平面向量的坐标运算,以及向量平行,是常考题型.19、(1)证明见解析(2)【解析】

(1)取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.(2)建立空间直角坐标系,求得半平面的法向量:,然后利用空间向量的相关结论可求得二面角的余弦值.【详解】(1)取中点R,连接,,则在中,,且,又Q是中点,所以,而且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)在平面内作交于点G,以E为原点,,,分别为x,y,x轴,建立如图所示的空间直角坐标系,则各点坐标为,,,所以,,设平面的一个法向量为,则即,取,得,又平面的一个法向量为,所以.因此,二面角的余弦值为【点睛】本题考查线面平行的判定,考查利用空间向量求解二面角,考查逻辑推理能力及运算求解能力,难度一般.20、(1);(2).【解析】

(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函数值域的方法即可得到答案.【详解】(1)因为,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因为,所以.(2)由(1)得,在中,,所以.因为,所以,所以当,即时,有最大值1,所以的最大值为.【点睛】本题考查正余弦定理解三角形,涉及到两角差的正弦公式、辅助角公式、向量数量积的坐标运算,是一道容易题.21、(1)60%;(2)(i)0.12(ii)【解析】

(1)利用上线人数除以总人数求解;(2)(i)利用二项分布求解;(ii)甲、乙两市上线人数分别记为X,Y,得,.,利用期望公式列不等式求解【详解】(1)估计本科上线率为.(2)(i)记“恰有8名学生达到本科线”为事件A,由图可知,甲市每个考生本科上线的概率为0.6,则.(ii)甲、乙两市2020届高考本科上线人数分别记为X,Y,依题意,可得,.因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论