版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学精选资源2/211.1.2学习目标核心素养1.以长方体的构成为例,认识构成几何体的基本元素,体会空间中的点、线、面与几何体之间的关系.(重点)2.初步了解空间中直线与直线、直线与平面、平面与平面间的位置关系.(重点)3.理解平面的无限延展性,学会判断平面的方法.(难点)1.通过认识构成几何体的基本元素的学习,体现了数学抽象的核心素养.2.借助空间中直线与直线、直线与平面、平面与平面间的位置关系,培养直观想象的核心素养.1.用运动的观点理解空间基本图形之间的关系(3)面动成体:面运动的轨迹(经过的空间部分)可以形成一个几何体.2.构成空间几何体的基本元素点、线、面是构成空间几何体的基本元素.3.点、直线、平面之间的位置关系及其表示方法(1)直线在平面内的概念如果直线l上的所有点都在平面α内,就说直线l在平面α内,或者说平面α经过直线l.(2)常见的文字语言、符号语言与图形语言的对应关系文字语言符号语言图形语言A在l上A∈lA在l外AlA在α内A∈αA在α外Aαl在α内lαl在α外lαl,m相交于Al∩m=Al,α相交于Al∩α=Aα,β相交于lα∩β=l4.空间两条直线的位置关系位置关系特点相交同一平面内,有且只有一个公共点平行同一平面内,无公共点异面直线既不平行也不相交,无公共点5.直线与平面的位置关系位置关系直线在平面内直线在平面外直线与平面相交相线与平面平行公共点无数个1个0个符号表示aαa∩α=Aa∥α图形表示6.两个平面的位置关系位置关系平行相交图示表示法α∥βα∩β=a公共点个数0个无数个7.直线与平面垂直(1)定义:一般地,如果直线l与平面α相交于一点A,且对平面α内任意一条过点A的直线m,都有l⊥m,则称直线l与平面α垂直(或l是平面α的一条垂线,α是直线l的一个垂面),记作l⊥α,其中点A称为垂足.(2)点到平面的距离由长方体可以看出,给定空间中一个平面α及一个点A,过A可以作而且只可以作平面α的一条垂线.如果记垂足为B,则称B为A在平面α内的射影(也称为投影),线段AB为平面α的垂线段,AB的长为点A到平面α的距离.(3)直线到平面的距离与两平行平面之间的距离当直线与平面平行时,直线上任意一点到平面的距离称为这条直线到这个平面的距离;当平面与平面平行时,一个平面上任意一点到另一个平面的距离称为这两平行平面之间的距离.1.下列说法:①任何一个几何体都必须有顶点、棱和面;②一个几何体可以没有顶点;③一个几何体可以没有棱;④一个几何体可以没有面.其中正确的个数是()A.1 B.2C.3 D.4B[球只有一个曲面围成,故①错,②对,③对,由于几何体是空间图形,故一定有面,④错.]2.下列关于长方体的叙述不正确的是()A.将一个矩形沿竖直方向平移一段距离可形成一个长方体B.长方体中相对的面都相互平行C.长方体中某一底面上的高的长度就是两平行底面间的距离D.两底面之间的棱互相平行且等长A[A中只有移动相同距离才能形成长方体.]3.下列说法正确的是________.(1)长方体是由六个平面围成的几何体;(2)长方体可以看作一个矩形ABCD上各点沿铅垂线向上移动相同距离到矩形A′B′C′D′所围成的几何体;(3)长方体一个面上的任一点到对面的距离相等.(2)(3)[(1)错.因长方体由6个矩形(包括它的内部)围成,注意“平面”与“矩形”的本质区别;(2)正确;(3)正确.]4.如图,在正四棱柱(侧面为矩形,底面为正方形的棱柱)ABCDA1B1C1D1中,E,F分别是AB1,BC1(1)EF与BB1垂直;(2)EF与BD垂直;(3)EF与CD异面;(4)EF与A1C1(4)[连接A1B(图略),∵E,F分别是AB1,BC1的中点,∴EF是△A1BC1的中位线,∴EF∥A1C1图形语言、文字语言、符号语言的相互转化【例1】点P在直线a上,直线a在平面α内可记为()A.P∈a,aα B.Pa,aαC.Pa,a∈α D.P∈a,a∈α(2)用符号表示下列语句,并画出图形.①平面α与β相交于直线l,直线a与α,β分别相交于A,B.②点A,B在平面α内,直线a与平面α交于点C,C不在直线AB上.[思路探究]直线和平面看作点的集合⇒类比元素与集合、集合与集合之间关系的表示方法进行表示.(1)A[由点与直线的位置关系表示方法及直线与平面之间位置关系的表示可知点P在直线a上表示为P∈a,直线a在平面α内可表示为aα,故A正确.](2)解:①用符号表示:α∩β=l,a∩α=A,a∩β=B,如图.②用符号表示:A∈α,B∈α,a∩α=C,CAB,如图.三种语言的转换方法1.用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.2.要注意符号语言的意义.如点与直线的位置关系只能用“∈”或“”,直线与平面的位置关系只能用“”或“”.提醒:根据符号语言或文字语言画相应的图形时要注意实线和虚线的区别.1.已知如图,试用适当的符号表示下列点、直线和平面之间的关系:(1)点C与平面β:________.(2)点A与平面α:________.(3)直线AB与平面α:____________.(4)直线CD与平面α:__________.(5)平面α与平面β:__________.[答案](1)Cβ(2)Aα(3)AB∩α=B(4)CDα(5)α∩β=BD从运动观点认识几何体【例2】如图所示,请画出①②③中线段AB绕着直线l旋转一周形成的空间图形.①②③[思路探究]线的运动可以形成平面或曲面,观察AB和l的位置关系及旋转的方式和方向,可以尝试画出形成的图形.[解]①②③用运动观点认识几何体1.点、线、面运动形成怎样的图形与其运动的形式和方向有关,如果直线与旋转轴平行,那么形成圆柱面,如果与旋转轴斜交,那么形成圆锥面.2.在判断点、线、面按一定规律运动形成的几何体的形状时,可以借助身边的实物来模拟.2.本例若改为AB与l有如图所示的关系,请画出旋转一周形成的几何图形.[解]长方体中基本元素之间的关系[探究问题]1.射线运动后的轨迹是什么?[提示]水平放置的射线绕顶点在水平面内旋转一周,可形成平面.其它情况,可形成曲面.2.如图所示,该几何体是某同学课桌的大致轮廓,请你从这个几何体里面寻找一些点、线、面,并将它们列举出来.[提示]面可以列举如下:平面A1A2B2B1,平面A1A2D2D1,平面C1C2D2D1,平面B1B2C2C1,平面A1B1C1D1,平面A线可以列举如下:直线AA1,直线BB1,直线CC1,直线DD1,直线A2B2,直线C2D2等;点可以列举如下:点A,点A1,点B,点B1,点C,点C1,点D,点D1,点A2,点B2,点C2,点D2;它们共同组成了课桌这个几何体.【例3】在长方体ABCDA′B′C′D′中,把它的12条棱延伸为直线,6个面延展为平面,那么在这12条直线与6个平面中,(1)与直线B′C′平行的平面有哪几个?(2)与平面BC′平行的平面有哪几个?[思路探究]观察图形,结合定义,利用运动的观点来分析图形中的线面位置关系.[解](1)与直线B′C′平行的平面有平面ABCD,平面ADD′A′.(2)与平面BC′平行的平面为平面AD′.1.在本例中其他条件不变,(1)与直线B′C′垂直的平面有哪几个?(2)与平面BC′垂直的平面有哪几个?[解](1)有平面AB′,平面CD′.(2)有平面AB′,平面A′C′,平面CD′,平面AC.2.本例中与棱A′D′相交的棱有哪几条?它们与棱A′D′所成的角是多少?[解]有A′A,A′B′,D′D,D′C′.由于长方体六个面都是矩形,所以它们与棱A′D′所成角都是90°.3.本例中长方体的12条棱中,哪些可以用来表示面A′B与面D′C之间的距离?[解]A′D′,B′C′,BC,AD的长均可以表示.1.平行关系的判定(1)直线与直线的平行关系:如图,在长方体的12条棱中,分成“长”“宽”“高”三组,其中“高”AA1,BB1,CC1,DD1相互平行;“长”AB,DC,A1B1,D1C1相互平行;“宽”AD,BC,A1D1,B1C1(2)直线与平面的平行关系:在长方体的12条棱及表面中,若棱所在的直线与某一平面不相交,就平行.(3)平面与平面的平行关系:长方体的对面相互平行.2.垂直关系的判定(1)直线与平面的垂直关系:在长方体的棱所在直线与各面中,若直线与平面有且只有一个公共点,则二者垂直.(2)平面与平面的垂直关系:在长方体的各表面中,若两平面有公共点,则二者垂直.1.根据点、线、面之间的语言描述能够正确的使用符号语言表示它们之间的位置关系.2.判断两直线的位置关系的依据就在于两直线平行、相交、异面的定义,在很多情况下,定义就是一种常用的判断方法.3.弄清直线与平面各种位置关系的特征,利用定义作出判断,要有画图意识,并借助于空间想象能力进行细致的分析.1.判断(正确的打“√”,错误的打“×”)(1)几何体不仅包括它的外表面,还包括外表面围起的内部部分. ()(2)直线的移动只能形成平面. ()(3)平静的太平洋就是一个平面. ()[解析](1)正确.(2)直线移动可能形成曲面,故错误.(3)平面是没有大小的,故错误.[答案](1)√(2)×(3)×2.能正确表示点A在直线l上且直线l在平面α内的是()C[选项A只表示点A在直线l上;选项D表示直线l与平面α相交于点A;选项B中的直线l有部分在平行四边形的外面,所以不能表示直线在平面α内,故选C.]3.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是()A.异面或平行 B.异面或相交C.异面 D.相交、平行或异面D[可参考长方体中各条线的位置关系判断.]4.线段AB长为5cm,在水平面上向右移动4cm后记为CD,将CD沿铅垂线方向向下移动3cm后记为C′D′,再将C′D′沿水平方向向左移动4cm后记为A′B′,依次连接构成长方体ABCDA′B′C′D′.(1)该长方体的高为________cm;(2)平面A′B′BA与平面CDD′C′间的距离为_______
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度绿色生态农业项目采购及施工安装合同汇编3篇
- 2025年度餐厨废弃物处置与废弃物资源化利用合作协议3篇
- 2025年度电力设施建设与运营合同2篇
- 2024年绿化工程专用树木购买及养护服务合同范本3篇
- 2024年餐饮业废料环保处理协议版
- 2024年高性能节能砌体劳务分包合同3篇
- 2024年违章建筑拆除补偿协议3篇
- 2024年高速铁路桥梁钢筋订购合同
- 2024年校园招聘及实习生培养服务合同3篇
- 2024智能安防系统集成服务合同
- 应收帐款管理办法
- 食品安全分享
- 跨境代运营合同范例
- 水利水电工程验收实施细则模版(3篇)
- 四川雅安文化旅游集团有限责任公司招聘笔试冲刺题2024
- 计算机等级考试二级WPS Office高级应用与设计试题及答案指导(2025年)
- 造价框架协议合同范例
- 2024-2025学年 语文二年级上册 部编版期末测试卷 (含答案)
- 小学六年级数学100道题解分数方程
- YY 0838-2021 微波热凝设备
- 通信机房蓄电池放电试验报告
评论
0/150
提交评论