2025届江苏省无锡市锡山区天一中学高一上数学期末联考试题含解析_第1页
2025届江苏省无锡市锡山区天一中学高一上数学期末联考试题含解析_第2页
2025届江苏省无锡市锡山区天一中学高一上数学期末联考试题含解析_第3页
2025届江苏省无锡市锡山区天一中学高一上数学期末联考试题含解析_第4页
2025届江苏省无锡市锡山区天一中学高一上数学期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省无锡市锡山区天一中学高一上数学期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,正方体中,分别为棱的中点,则在平面内与平面平行的直线A.不存在 B.有1条C.有2条 D.有无数条2.已知,且点在线段的延长线上,,则点的坐标为()A. B.C. D.3.函数(且)与函数在同一坐标系内的图象可能是()A. B.C. D.4.若函数的定义域为R,则下列函数必为奇函数的是()A. B.C. D.5.A. B.C.1 D.6.设全集,集合,则等于A. B.C. D.7.已知幂函数,在上单调递增.设,,,则,,的大小关系是()A. B.C. D.8.函数取最小值时的值为()A.6 B.2C. D.9.已知函数的定义域为R,是偶函数,,在上单调递增,则不等式的解集为()A. B.C D.10.设全集,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,且,则a的取值范围为________f(x)的最大值与最小值和为________.12.已知函数,若,则实数的取值范围为______.13.已知函数是奇函数,当时,,若,则m的值为______.14.已知幂函数在为增函数,则实数的值为___________.15.已知定义在R上的函数满足,且当时,,若对任都有,则m的取值范围是_________16.已知,函数,若函数有两个零点,则实数k的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,圆.(1)求过点且与圆相切的直线方程;(2)若直线与圆相交于,两点,且弦的长为,求实数的值.18.已知圆:关于直线:对称的图形为圆.(1)求圆的方程;(2)直线:,与圆交于,两点,若(为坐标原点)的面积为,求直线的方程.19.已知函数.(1)当时,求在上的值域;(2)当时,已知,若有,求的取值范围.20.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面21.已知().(1)当时,求关于的不等式的解集;(2)若f(x)是偶函数,求k的值;(3)在(2)条件下,设,若函数与的图象有公共点,求实数b的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据已知可得平面与平面相交,两平面必有唯一的交线,则在平面内与交线平行的直线都与平面平行,即可得出结论.【详解】平面与平面有公共点,由公理3知平面与平面必有过的交线,在平面内与平行的直线有无数条,且它们都不在平面内,由线面平行的判定定理可知它们都与平面平行.故选:D.【点睛】本题考查平面的基本性质、线面平行的判定,熟练掌握公理、定理是解题的关键,属于基础题.2、C【解析】设,根据题意得出,由建立方程组求解即可.【详解】设,因为,所以即故选:C【点睛】本题主要考查了由向量共线求参数,属于基础题.3、C【解析】分,两种情况进行讨论,结合指数函数的单调性和抛物线的开口方向和对称轴选出正确答案.【详解】解:当时,增函数,开口向上,对称轴,排除B,D;当时,为减函数,开口向下,对称轴,排除A,故选:C.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.4、C【解析】根据奇偶性的定义判断可得答案.【详解】,由得是偶函数,故A错误;,由得是偶函数,故B错误;,由得是奇函数,故C正确;,由得是偶函数,故D错误;故选:C.5、A【解析】由题意可得:本题选择A选项.6、A【解析】,=7、A【解析】根据幂函数的概念以及幂函数的单调性求出,在根据指数函数与对数函数的单调性得到,根据幂函数的单调性得到,再结合偶函数可得答案.【详解】根据幂函数的定义可得,解得或,当时,,此时满足在上单调递增,当时,,此时在上单调递减,不合题意.所以.因为,,,且,所以,因为在上单调递增,所以,又因为为偶函数,所以,所以.故选:A【点睛】关键点点睛:掌握幂函数的概念和性质、指数函数与对数函数的单调性是解题关键.8、B【解析】变形为,再根据基本不等式可得结果.【详解】因为,所以,所以,当且仅当且,即时等号成立.故选:B【点睛】本题考查了利用基本不等式求最值时,取等号的条件,属于基础题.9、A【解析】由题意判断出函数关于对称,结合函数的对称性与单调性求解不等式.【详解】∵是偶函数,∴函数关于对称,∴,又∵在上单调递增,∴在单调递减,∴可化为,解得,∴不等式解集为.故选:A10、B【解析】先求出集合B的补集,再求【详解】因为,,所以,因为,所以,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.2【解析】由结合,即可求出a的取值范围;由,知关于点成中心对称,即可求出f(x)的最大值与最小值和.【详解】由,,所以,则故a的取值范围为.第(2)空:由,知关于点成中心对称图形,所以.故答案为:;.12、或【解析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.13、【解析】由奇函数可得,则可得,解出即可【详解】因为是奇函数,,所以,即,解得故答案为:【点睛】本题考查利用奇偶性求值,考查已知函数值求参数14、4【解析】根据幂函数的定义和单调性,即可求解.【详解】解:为递增的幂函数,所以,即,解得:,故答案为:415、,【解析】作出当,时,的图象,将其图象分别向左、向右平移个单位(横坐标不变,纵坐标变为原来的或2倍),得到函数的图象,令,求得的最大值,可得所求范围【详解】解:因为满足,即;又由,可得,画出当,时,的图象,将在,的图象向右平移个单位(横坐标不变,纵坐标变为原来的2倍),再向左平移个单位(横坐标不变,纵坐标变为原来的倍),由此得到函数的图象如图:当,时,,,,又,所以,令,由图像可得,则,解得,所以当时,满足对任意的,,都有,故的范围为,故答案为:,16、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r,直接求解圆的切线方程即可(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a即可【详解】(1)由圆的方程得到圆心,半径.当直线斜率不存在时,直线与圆显然相切;当直线斜率存在时,设所求直线方程为,即,由题意得:,解得,∴方程为,即.故过点且与圆相切的直线方程为或.(2)∵弦长为,半径为2.圆心到直线的距离,∴,解得.【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力18、(1),(2)【解析】(1)设圆圆心为,则由题意得,求出的值,从而可得所求圆的方程;(2)设圆心到直线:的距离为,原点到直线:的距离为,则有,,再由的面积为,列方程可求出的值,进而可得直线方程【详解】解:(1)设圆的圆心为,由题意可得,则的中点坐标为,因为圆:关于直线:对称的图形为圆,所以,解得,因为圆和圆的半径相同,即,所以圆的方程为,(2)设圆心到直线:的距离为,原点到直线:的距离为,则,,所以所以,解得,因为,所以,所以直线的方程为【点睛】关键点点睛:此题考查圆的方程的求法,考查直线与圆的位置关系,解题的关键是利用点到直线的距离公式表示出圆心到直线的距离为,原点到直线的距离为,再表示出,从而由的面积为,得,进而可求出的值,问题得到解决,考查计算能力,属于中档题19、(1);(2).【解析】(1)将方程整理为关于的二次函数,令,利用二次函数的图象与性质求函数的值域;(2)利用换元法及二次函数的性质求出函数在上的值域A,根据对数函数的单调性求出函数在区间上的值域B,根据题意有,根据集合的包含关系列出不等式进行求解.【详解】(1)当,令,设,,函数在上单调递增,,的值域为.(2)设的值域为集合的值域为集合根据题意可得,,令,,,函数在上单调递增,且,,又,所以在上单调递增,,,由得,的取值范围是.【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则的值域是值域的子集20、(1)见解析;(2)见解析【解析】分析:(1)可根据为等腰三角形得到,再根据平面平面可以得到平面,故.(2)因及是中点,从而有,再根据平面得到,从而平面,故平面平面.详解:(1)证明:因为,点是棱的中点,所以,平面.因为平面平面,平面平面,平面,所以平面,又因为平面,所以.(2)证明:因为,点是的中点,所以.由(1)可得,又因为,所以平面,又因为平面,所以平面平面点睛:线线垂直的证明,可归结为线面垂直,也可以转化到平面中的某两条直线的垂直问题,而面面垂直的证明,可转化为线面垂直问题,也转化为证明二面角为直二面角.21、(1)(2)1(3)【解析】(1)根据条件列指数不等式,直接求解即可;(2)利用偶函数定义列直接求解即可;(3)根据题意列方程,令,得到方程,构造,结合二次函数性质讨论方程的根即可.【详解】(1)因为所以原不等式的解集为(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论