山东省泰安第十中学2024年中考数学猜题卷含解析_第1页
山东省泰安第十中学2024年中考数学猜题卷含解析_第2页
山东省泰安第十中学2024年中考数学猜题卷含解析_第3页
山东省泰安第十中学2024年中考数学猜题卷含解析_第4页
山东省泰安第十中学2024年中考数学猜题卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省泰安第十中学2024年中考数学猜题卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗 B.2颗 C.3颗 D.4颗2.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°3.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有()A.4个 B.3个 C.2个 D.1个4.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是()A.先向下移动1格,再向左移动1格 B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格 D.先向下移动2格,再向左移动2格5.在半径等于5cm的圆内有长为cm的弦,则此弦所对的圆周角为A.60° B.120° C.60°或120° D.30°或120°6.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O是以原点为圆心,半径为圆,则⊙O的“整点直线”共有()条A.7 B.8 C.9 D.107.的值是()A.1 B.﹣1 C.3 D.﹣38.已知是二元一次方程组的解,则的算术平方根为()A.±2 B. C.2 D.49.下列计算中,错误的是()A.; B.; C.; D..10.如图,△ABC中,D、E分别为AB、AC的中点,已知△ADE的面积为1,那么△ABC的面积是()A.2 B.3 C.4 D.5二、填空题(共7小题,每小题3分,满分21分)11.方程的两个根为、,则的值等于______.12.已知AB=AC,tanA=2,BC=5,则△ABC的面积为_______________.13.当x为_____时,分式的值为1.14.如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.15.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.16.不解方程,判断方程2x2+3x﹣2=0的根的情况是_____.17.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.三、解答题(共7小题,满分69分)18.(10分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.19.(5分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.20.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是_____度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?21.(10分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.22.(10分)抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为.(1)抛物线的对称轴是直线________;(2)当时,求抛物线的函数表达式;(3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围.23.(12分)解不等式,并把解集在数轴上表示出来.24.(14分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x123456789价格y1(元/件)560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题解析:由题意得,解得:.故选B.2、C【解析】

由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C.∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D.∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.3、B【解析】

根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正确;②|b|=|d|,故②正确;③a+c=a,故③正确;④ad<0,故④错误;故选B.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.4、C【解析】

根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.5、C【解析】

根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.6、D【解析】试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.7、B【解析】

直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,=﹣1.故选:B.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,8、C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵是二元一次方程组的解,∴,解得.∴.即的算术平方根为1.故选C.9、B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A.,故A正确;B.,故B错误;C..故C正确;D.,故D正确;故选B.点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.10、C【解析】

根据三角形的中位线定理可得DE∥BC,=,即可证得△ADE∽△ABC,根据相似三角形面积的比等于相似比的平方可得=,已知△ADE的面积为1,即可求得S△ABC=1.【详解】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面积为1,∴S△ABC=1.故选C.【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得△ADE∽△ABC,根据相似三角形面积的比等于相似比的平方得到=是解决问题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】

根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得,,所以===1.故答案为1.【点睛】本题考查了根与系数的关系:若、是一元二次方程(a≠0)的两根时,,.12、【解析】

作CD⊥AB,由tanA=2,设AD=x,CD=2x,根据勾股定理AC=x,则BD=,然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+,解得x2=,则S△ABC===【详解】如图作CD⊥AB,∵tanA=2,设AD=x,CD=2x,∴AC=x,∴BD=,在Rt△CBD中BC2=BD2+CD2,即52=4x2+,x2=,∴S△ABC===【点睛】此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.13、2【解析】

分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,

∴x=2,

当x=2时,2x+1≠1.

∴当x=2时,分式的值是1.

故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.14、【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分别是边AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴,∴,∴CE=,故答案为.15、【解析】

首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.16、有两个不相等的实数根.【解析】分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.详解:∵a=2,b=3,c=−2,∴∴一元二次方程有两个不相等的实数根.故答案为有两个不相等的实数根.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.17、【解析】试题解析:305000用科学记数法表示为:故答案为三、解答题(共7小题,满分69分)18、(1)(2)作图见解析;(3).【解析】

(1)利用平移的性质画图,即对应点都移动相同的距离.(2)利用旋转的性质画图,对应点都旋转相同的角度.(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.(3)∵,∴点B所走的路径总长=.考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.19、(1)详见解析;(2);(3)【解析】

(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;

(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;

(3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.【详解】(1)连接OC,

∵OA=OC,

∴∠A=∠OCA,

∵AC∥OP,

∴∠A=∠BOP,∠ACO=∠COP,

∴∠COP=∠BOP,

∵PB是⊙O的切线,AB是⊙O的直径,

∴∠OBP=90°,

在△POC与△POB中,,

∴△COP≌△BOP,

∴∠OCP=∠OBP=90°,

∴PC是⊙O的切线;

(2)过O作OD⊥AC于D,

∴∠ODC=∠OCP=90°,CD=AC,

∵∠DCO=∠COP,

∴△ODC∽△PCO,

∴,

∴CD•OP=OC2,

∵OP=AC,

∴AC=OP,

∴CD=OP,

∴OP•OP=OC2

∴,

∴sin∠CPO=;

(3)连接BC,

∵AB是⊙O的直径,

∴AC⊥BC,

∵AC=9,AB=1,

∴BC==12,

当CM⊥AB时,

d=AM,f=BM,

∴d+f=AM+BM=1,

当M与B重合时,

d=9,f=0,

∴d+f=9,

∴d+f的取值范围是:9≤d+f≤1.【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.20、(1)117;(2)答案见图;(3)B;(4)30.【解析】

(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【详解】(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×1340故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×440【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21、见解析【解析】

先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.【详解】证明:如图,连接AC.∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA,∴△EAC≌△FCA,∴∠ECA=∠FAC,∴GA=GC,∴点G在AC的中垂线上,∴点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.22、(1);(2);(3)【解析】

(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)根据抛物线的对称轴及即可得出点、的坐标,根据点的坐标,利用待定系数法即可求出抛物线的函数表达式;(3)利用配方法求出抛物线顶点的坐标,依照题意画出图形,观察图形可得出,再利用一次函数图象上点的坐标特征可得出,结合的取值范围即可得出的取值范围.【详解】(1)∵抛物线的表达式为,∴抛物线的对称轴为直线.故答案为:.(2)∵抛物线的对称轴为直线,,∴点的坐标为,点的坐标为.将代入,得:,解得:,∴抛物线的函数表达式为.(3)∵,∴点的坐标为.∵直线y=n与直线的交点的横坐标记为,且当时,总有,∴x2<x3<x1,∵x3>0,∴直线与轴的交点在下方,∴.∵直线:经过抛物线的顶点,∴,∴.【点睛】本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论