GTI 5G和云化机器人白皮书-_第1页
GTI 5G和云化机器人白皮书-_第2页
GTI 5G和云化机器人白皮书-_第3页
GTI 5G和云化机器人白皮书-_第4页
GTI 5G和云化机器人白皮书-_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GTI5GandCloudRobotics

WhitePaper

1

PAGE

6

Confidentiality:ThisdocumentmaycontaininformationthatisconfidentialandaccesstothisdocumentisrestrictedtothepersonslistedintheConfidentialLevel.Thisdocumentmaynotbeused,disclosedorreproduced,inwholeorinpart,withoutthepriorwrittenauthorizationofGTI,andthosesoauthorizedmayonlyusethisdocumentforthepurposeconsistentwiththeauthorization.GTIdisclaimsanyliabilityfortheaccuracyorcompletenessortimelinessoftheinformationcontainedinthisdocument.Theinformationcontainedinthisdocumentmaybesubjecttochangewithoutpriornotice.

DocumentHistory

Date

Meeting#

Version#

RevisionContents

DD-MM-YYYY

NA

DD-MM-YYYY

DD-MM-YYYY

DD-MM-YYYY

DD-MM-YYYY

CloudRobotics:Trends,Technologies,

Communications

Abstract

Cloudrobotsarecontrolledfroma“brain”inthecloud.Thebrain,locatedinadatacenter,makesuseofArtificialIntelligenceandotheradvancedsoftwaretechnologiestodealwithtasksthatintraditionalrobotswereundertakenbyalocal,on-boardcontroller.Comparedtolocalrobots,cloudrobotswillgeneratenewvaluechains,newtechnologies,newarchitectures,newexperiencesandnewbusinessmodels,thiswhitepaperwillexploretheseaspects.

Introduction

Cloudroboticsisarelativelyrecentconcept.Earlyworkdatesbackto2010,whentheEuropeanCommission’sRoboEarthiprojectbegan.Thisaimedtoestablisha“WorldWideWebforrobots”.RoboEarthandlaterprojectssuchasRapyutaiiandRobohowiiiformalizedthebasicconceptandtechnologies,andarestillinfluencingcloudroboticresearchtoday.

Therearethreecoreadvantagesofcloudrobotscomparedtostand-alonerobots:

InformationsharingManycloudrobotscanbecontrolledfromonebrain,andthebraincanaccumulatevisual,verbal,andenvironmentaldatafromallconnectedrobots.Intelligencederivedfromthisdatacanbeusedbyalltherobotscontrolledbythebrain.Aswithothercloudservices,informationcollectedandprocessedoneachrobotwillalwaysbeup-to-dateandbacked-upsafely.Developersalsobenefit,astheycanbuildreusablesolutionsforallcloud-connectedrobots.

OffloadedcomputationSomerobottasksrequiremorecomputationalpowerthanalocalcontrollercaneconomicallydeliver.Offloading

totheclouddata-intensivetaskssuchasvoiceandimagerecognition,voicegeneration,environmentalmappingandmotionplanningwilllowerthehardwarerequirementsandpowerconsumptionofrobots,makingthemlighter,smaller,andcheaper.

CollaborationCloudrobotsdonotneedtoworkalone.Usingthecloudasacommonmedium,tworobotscanworktogethertocarryanobjecttooheavyforone,oragroupofsimpleworkerrobotscanworkwithalocalmap,providedbyaleaderrobotwithcostlysensors.

Figure1:Largescaledatacollectionwithanarrayofrobots(14robotsaresharingexperiencesofmachinelearningforgrasping)[Source:

/2016/03/deep-learning-for-robots-learning-from.html]

DistributedversionofAlphaGoexploited40searchthreads,1202CPUsand176GPUsx,noordinaryrobotcaninstallinside.Butcloudrobotcanmakeuseofit.

Applicationsforcloudrobots

Usingcloudresourcesempowersrobotsandgivesthemnewcapabilitiesinmanyareas:

Intelligentvisualprocessing:imageclassification,targetdetection,imagesegmentation,imagedescription,characterrecognition.

Naturallanguageprocessing:semanticunderstandingbasedondepthlearning,accurateidentificationofuserintent,multi-intentionanalysis,emotionalanalysis.Makesuseofapowerfulbackgroundknowledgebase.

Facialrecognition:facedetectionalgorithmbasedondepthlearning;Inthereal-timevideo

streamtoaccuratelydetecttheface;Anyfacemaskandreal-timedetectionundertheviewingangle;Toovercome:thesideface,halfobscured,blurredface;

Extensionfromcurrentrobotapplications:outdoormapnavigation,indoorpositioningandnavigation,typicalproductidentification,universalitemidentification,environmentalunderstanding,textreading,voiceprompts.

Theapplicationsthatwillemergeforcloudrobotsareofmanykinds;someareemergingnow–othersareatanearlystageofdevelopment.

Logistics

Amazon,Jingdong,S.F.Expressandothercompanieshavedeployedlogisticsrobotsystems.ThewheeledAGV(AutomatedGuidedVehicle)isthemaintypeoflogisticsrobot(thoughlogisticscompaniesarealsotriallingtheuseofaerialdrones).Byconnectingtothecloud,AGVscanachieveunifiedscheduling(whereallAGVsareworkingasasinglesystemformaximumefficiency).Inaddition,AGVscanbeequippedwithmachinevisionsystems,andvideocanbetransmittedtocloud-basedsystemstohandleavarietyofsituationsontheroad.EventuallythiswillresultinAGVscomingoutofcontrolledareastotakeonmorework,includinginpublicplacesfordeliveryofparcelsorfood.

Securityandsurveillance

Inpublicplaces,cloudrobotscanperform24/7securityinspections,replacingsecuritypersonnel.Thecloudrobotwillcollectvideoandstillimagesandsendthemtothepublicsafetycloudforreal-timeidentificationofsuspiciouspeopleand

Personalassistanceandcare

Providingpersonalassistanceandcarefortheelderlyiswidelyconsideredthe“nextbigthing”inrobotics.Thepowerofthecloudmakescarerobotsbehavemorelikehumans.Theycancarryoutreal-timemonitoringofpersonalhealth,helppeoplemoveabout,andcompletehousework.AnexampleofthistypeofrobotisSoftbank’sRomeo.

activity.SuchrobotsarealreadybeingusedatShenzhenairportinChina.

Guidance

Inpublicplacessuchasenterprises,banksandhospitals,robotslikeSoftbank’sPepperarebeingusedtoguidevisitors.TheyarealsobeingusedtodeliverretailservicesbycompaniesincludingNestle,YamadaElectricandMizuhoBank.Cloudrobotscanmakeuseofavastknowledgedatabaseinthecloud,andcommunicateusingnaturallanguage;theycanevenrecogniseandrespondtopeople’sexpressionsusingcloud-AI-basedimageanalysis,toimprovetheuseexperience.

Education,entertainmentandcompanionship

Inrecentyears,theapplicationofmachinevisionandartificialintelligencehasresultedinthedevelopmentofmanyrobotsforeducationandentertainment.ExamplesincludeJibo,AsusZenbo,andSoftbankNao.Theserobotshaveahumanoidappearanceandtheabilitytousenaturallanguage.Theycandownloadcontentfromthecloudtoprovideeducationandentertainmentservices.

Figure2:Cloud-poweredsmartdevicesandcommunicationrobots[Source:Softbank]

Markettrends

Robotscanbecategorisedasindustrialrobotsorservicerobots,accordingtotheiruse.Service

226.2$bn

Accordingtomarketanalyst

robotscanbefurtherdividedintoprofessional

servicesrobotsandpersonalhomeservicerobots.Professionalservicerobotsareusedinthefieldsofmedicine,construction,underwaterengineering,logistics,defenceandsafety.Personalhomeservicerobotsareusedtoundertakehousework,providecompanionshipandpersonalassistance,andarealsousedinotherfields.

companyTractica,thevalueoftheglobalrobotmarketwillgrowfrom$34.1billionin2016to

$226.2billionin2021,withacompoundannualgrowthrate(CAGR)of46%invalueterms.Mostofthegrowthwillbeinthemarketfornon-industrialrobotsIX.

2bnOneofthemajordriversofthismarketgrowthistheagingpopulation.Therearefewerworking-agepeopletotakecareoftheincreasing

numbersoftheelderly.TheUNhasforecastthatby205021%oftheglobalpopulationwillbeovertheageof60–atotalofover2billionpeople.

Robotshavearoletoplayhere.Inaddition,industrialautomationcontinuestodevelopatarapidpace,withinitiativessuchasIndustry4.0inGermanyandMadeinChina2025.

AdvancesintechnologiesincludingArtificialIntelligence,theInternetofThingsandwirelesscommunicationsaremakingrobotsmorecapable.Theycannowidentifytheirsurroundings,calibratetheirposition,plantrajectories,andusenaturalinterfacestointeractwithhumans.Therehavebeenincreasesinthecapabilitiesofrobotsusedinindustry,agriculture,logisticsandeducation.Therapidriseintheuseofdronesisalsoevidenceoftheincreasingcapabilitiesofrobots.

CloudrobotswillsoonbecomethenormCloud-basedAIandconnectivitywillshapethedevelopmentoftherobotmarketsignificantlyin

thenextfewyears.Thesetechniqueshavealreadybeguntochangethewaythatpeopleinteract:technologygiantshavedevelopedAI-basedsystemsthatarebecomingwidelyused.ExamplesincludeGoogleCloudSpeechAPI,AmazonAlexa,BaiduDuer,IBMWatson,AppleSiriandMicrosoftCortana.

12%AccordingtoHuaweiGIV,by2025theuseofmobileconnectivityandartificialintelligencewillresultinrobotpenetrationinthefamilyof12%;intelligentrobotswillchangethefaceofallindustriesinthesamewaythattheautomotiveindustrywastransformativeinthe20thcentury.

GTIcloudroboticsworkinggroupresearchforecaststhatby2020connectedrobotswillaccountfor90%ofallrobots,andabout20millionnewconnectionswillbeneededeveryyeartosupporttheirday-to-dayoperations.

GTIcloudroboticsworkinggrouphasexaminedtheroboticsmarketindetail.Itsworksuggeststhatby2020theproportionofconnectedrobotsgloballywillbe90%,andabout20millionnewconnectionswillbeneededeveryyeartosupporttheirday-to-dayoperations.Figures3-7showprojectionsforsalesofconnectedrobots.

Figure3:Connectedrobotsales2016-2020(million)[Source:GTIcloudroboticsworkinggroup]

Figure4:Connectedlogisticssystemrobots(thousand)[Source:GTIcloudroboticsworkinggroup]

Figure5Connecteddomesticrobots(million)

[Source:GTIcloudroboticsworkinggroup] 8

PAGE

10

Figure6:Connectedentertainmentrobots(million)

[Source:GTIcloudroboticsworkinggroup]

Figure7Connecteddisabledcareassistantrobot(thousand)[Source:GTIcloudroboticsworkinggroup]

Inthenextfewyears,domesticrobotsandrecreationalrobotswilloccupymostoftheshipmentsofconnectedrobots.Withtheincrease

inthecapabilityofrobots,theneedsofindividualsandfamiliesforservicerobotswillcontinuetoincrease.

willing unwilling neither

TURKEY

QATARNETHERLANDS

NORWAYGERMANY

UK

60

45

40

35

30

27

Figure8:WillingnesstouseAIandrobotsforhealthcare[Source:PwC]

Figure9:Willingnesstohavesurgeryperformedbyrobot

[Source:PwC]

Thecurrentpublicacceptanceofroboticservices,especiallymedicalservices,isnothigh.Peopleareskepticalaboutwhetherrobotscanreachthelevelsofskillofhumandoctors.However,inthenextfewyears,withrobots’abilitiesgraduallyimproving,people’sacceptanceofroboticmedicalserviceswillincrease.

ResearchpublishedbytheOpenRoboethicsInitiativeshowsthatthemainexpectationofhomeservicerobotsistocompletehouseworktomakelifeeasier.Inaddition,education,inspectionandsecurityneedsarerelativelystrong.

9%

11%

17%

19%

26%

32%

32%

38%

75%

Other

Fancytoy

Petreplacement

Companionforfamlily Forcoolnessfactor Educationtoolforchild

Homesecurity ExtensionofelectronicdevicesHouseholdchores

Figure10:Reasonsforpurchaseahomerobot[Source:OpenRoboethicsInitiative]

Thecloudroboticsvaluechain

ThevaluechainofcloudroboticsisshowninFigure11.Therobotplatformproviderdeliverstherobotwhichrunsapplications;theseapplicationsuseintelligentservicesfromtheAIprovider,makinguseofthemobilenetworktoprovidea“smart”userexperienceforendusers.

Robot

Platform

Application

Provider

Mobile

Network

AIProvider

Endusers

Figure11:Cloudroboticsvaluechain[Source:GTIcloudroboticsworkinggroup]

Robotplatform–thetechnologiesbehindcloudrobots

Thedefinitionofrobotmayvarybycontext,butageneraldefinitionis“Amechanicalsystemwiththreeelements:controller,sensor,and

effector/actuator”.

Controller

Astherobotgainscomplexityanddemandsbecomemoreadvanced,thecontrollerparthasalsodevelopedandtoday’srobotsareoftencontrolledbyOSorrichmiddleware,suchasROS(

/

),OpenRTM-aist,middlewarecompliantwithObjectManagementGroup(OMG)RoboticTechnologyComponent(RTC)Specificationiv,andNAOqi(OSusedinSoftbank’sPepper).

Incloudrobots,thecontrollerpartisachievedbycoordinationofcloudandlocalsystems.

Sensors

Robotsusemanydifferenttypesofsensorsrelevanttotheirfunction.Themostimportanttypesare:

CamerasandmicrophonesSophisticatedcamerasandmicrophonesarerequiredtosensetheenvironment.Forinstance,Softbank’shuman-sizedcommunicationrobot

Peppervusesa3DcameraandtwoHDcameras(seeFigure12),andfourdirectionalmicrophonestodetectwheresoundsarecomingfromandlocateuser’sposition.

Figure12:MicrophonearrayandtopcamerainPepperrobot[Source:

http://techon.nikkeibp.co.jp/article/COLUMN/201506

23/424503/?P=2]

3Dcamerasareusedtoprovidepositiondetectionandmapping(oftenreferredtoasSLAM(simultaneouslocationandmapping)).Other3Dpositioningsensorsandtechnologiesarealsoused,frominexpensiveproximitysensing,sonarandphotoelectricsensingtomoreaccurateandcostlytechniquessuchasLiDARthatcanbeusedtobuilduphighresolution3Dpicturesacrossawidecoveragearea.

Wirelessnetworksshouldprovidesufficientbandwidthandlatencyperformancetosendsensordatatothecontroller.Astheaccuracyof

thesensorincreases,sodoesthebandwidthrequired.

Approach

Accuracy

Range

DataRate

3Dcamera

Stereotriangulation/structuredlight

Accurate

Middle

2.8Mbit/s(1280*960@16fps

binocular)

Sonar

Sonicwavemeasurement

Proximity

Short

<1kbit/s

Photoelectricsensor

Photoelectricsignal

measurement

Proximity

Short

<1kbit/s

LiDAR

Timeofflight

Accurate

Wide

0.1Mbit/s(4000

samples@10Hz)

Figure13:Imagesensordescriptionandrequirements[Source:GTIcloudroboticsworkinggroup]

Figure14:SLAMprocessvisualizedonRVIZ,visualizationtoolforROS,andasampleofobtainedmapdata[Source:SoftBank]

Gyroscopes,accelerometers,magnetometersandothersensorsThesesensorsenablearobottoknowitsownorientation,rotationandlocation

Sensor/technologyforlocation

Function

InertiaMeasurementUnit(IMU)

Orientationandrotation

Opticalandquantum-basedsensors

Orientationandrotation

Touchsensor

Contactdetection

GPS

Outdoorlocation

Cellularnetworkdata

Indoor/Outdoorlocation

Bluetoothbeacon

Indoorlocation

Ultrasoundsystem

Objectdetection

Effectors/actuators

Mostactuatorsusedforrobotsareelectric,thoughhydraulicandpneumaticactuatorsarealsoused.Eachtypehasadvantagesanddisadvantages(seeFigure15).

Electrical

Hydraulic

Pneumatic

Operatingprinciple

Electricity,electromagneticforce

Pressurechangeinliquids(oil,water)

Compressedgasisusedtopowerthesystem

Formfactor

Motors(DC,AC,geared,directdriveetc.)andcontrolcircuits

Cylinder,fluidmotor

Cylinder,pneumaticartificialmuscles(PAM)

Advantages

Easytostoreanddistributeelectricenergy,highcontrolflexibility,lowcost

Quickmovementsandgreatforce

Cleanerthanhydraulic,easyinstallation,lightweight

Disadvantages

Producedtorquesaresmallerthanhydraulicorpneumatic

Requirepump,liquidcancausecontamination,difficulttocontrolprecisely

Requirecompressor,lessforceandslowerspeedthanhydraulicduetocompressibility

Figure15:Comparisonofrobotactuatorprinciples[Source:Softbank]

Newdevelopmentsinmobility

Robotplatformneedstoevolve.Robotsneedtohavelongeruptime,highermobilityandrange,thecapabilitytounderstandtheirsurroundings,andtocarryoutsimultaneouslocalizationandmapping(SLAM).

Oneapproachtoachievehighermobility,especiallyinroughterrain,ortodealwithstairsanddoors,istheuseofbipedalorquadrupedsystem.Butcontinuousbalancingisrequiredinthesesystemsandthisrequiresgreaterpower,andtherearesomesafetyconcerns.Safetyrulesforrobotsmayvarybycountryandlocalarea:onepossiblearrangementmaybetotreatrobotsaspedestrians,ormobilityscooters.Speedlimitsand

Mobilenetworksupport

5GOverview

5Gisthenextgenerationofmobilecommunicationtechnology.Itisexpectedtobedefinedbytheendofthisdecadeandtobewidelydeployedintheearlyyearsofthenextdecade.

Thekeycapabilityof5Gisthepeakrateofmorethan10Gbit/s,1millionconnectionspersquarekilometer,andlessthan1msend-to-enddelay.Threeapplicationscenariosfor5Ghavebeendefined:eMBB(EnhancedMobileBroadband),mMTC(MassiveMachineTypeCommunications),andURLLC(Ultra-reliableandLow-latencyCommunications).

remotemonitoringmayberequired(perhapsnotasstrictaswithautonomousvehicles).SafetystandardsthatalreadyapplytorobotsincludeISO13482;otherrelevantstandardsarethosecoveringhomeelectricalappliancesandradiowavetransmitters.

Amorepracticalapproachthanarobotwithlegsisawheeledrobotequippedwith3Dcamerasandrangesystems,asdescribedabove.Anotherapproachisthe“wearable”robot–suchas

CloudMinds’Metaheadset,whichprovidessophisticatedvisualrecognition,SLAM,anddirectionindicationusingvibration.

Todeliverservicesforthesethreescenarios,theconceptofnetworkslicinghasbeendeveloped.Itisexpectedtoimprovetheoperationofcommunicationnetworks.Thisconceptessentiallyconsistsincreatingdifferentinstancesofnetworktechnologiessuitablefordifferentapplicationswithdifferentrequirements.Suchadynamicandflexiblecommunicationnetworkparadigmwillbeenabledbyanewcloud-basednetworkarchitecture,encompassingSoftwareDefinedNetworking(SDN)andNetworkFunctionVirtualization(NFV).

Figure16:5Gcloudarchitecturetosupportmultipleapplications[Source:HuaweiXLabs]

5Gwillmeetthenetworkrequirementforcloudrobotics

Incloudrobotics,fourtypesofbasicconnectionareneeded:

Monitoringandstatusreporting–therobotuploadingdataaboutitsstatustothecloudbrain

Real-timecontrol–mission-criticalcontrolsignalstotelltherobotwhattodo

Videoandvoiceprocessing–tousepowerfulcloudresourcestohelptherobotunderstanditsenvironment,andtointeractwithusers

Softwareandservicesdownload–for

updatingtherobot’ssoftware,ordownloadingusercontentsuchasmapsoreducationalmaterial.Figure17showstherequirementsofthoseconnectiontypes.

Bandwidth

Latency

Reliability(%uptime)

Summary

Monitoringandstatusreporting

Uplink:1kbit/s

1s

99.9%

Highconnection

density

Real-timecontrol

Downlink:10kbit/s

20ms

99.999%

Lowlatency

Videoandvoiceprocessing

Uplink:3.3Mbit/s(1080p/H.264/30fps)

20ms

99.9%

Highuplinkbandwidthand

lowlatency

Softwareandservicesdownload

Downlink:10Mbit/s

100ms

99.9%

Highdownlink

bandwidth

Figure17:Robotnetworkrequirementanalysis[Source:HuaweiXLabs]

Figure18characterisesthenetworkrequirementsoffullycloudifiedversionsofcurrentrobottypes.Existingnetworkswillfinditdifficulttosupport

newrobotapplications,but5G’shighbandwidth,lowlatencyandhighreliabilitycanproviderobustsupportforfuturerobotapplications.

Figure18:Networkrequirementsforcloudrobotapplications[Source:HuaweiXLabs]

5Gnetworkslicingandmobileedgecomputingarewellsuitedforcloudroboticsapplications

Networkslicesthathavedifferentspecificperformancecharacteristicscanmatchtherequirementsofcloudrobotics,matchtheneedsforpowerconsumptionattherobotterminal,andprovideappropriateroaming.Usingtheseapproaches,5Gnetworkswillalsobeabletomeetthemostdemandingrequirementsintermsofbandwidth,latencyandsecurity.

Mobileedgecomputing(MEC)providesappropriatenetworkandothercomputingandstorageresourceslocatedatthemostappropriatepointtomeetthecloudroboticsapplicationrequirements.Byplacingresourcesclosertothe

user,networklatencycanbereduced.MECsolutionsmaybedeployedwiththeMECserverdeployedatagatewayorinthebasestation,providinglocalcontentcache,wirelessawareness-basedbusinessoptimization,localcontentforwarding,andnetworkcapability.Securityisalsoenhancedasmoredataisretainedclosertotheuseranddoesnottraversethecorenetwork.Forcloudrobotics,thecloserAIresourcescanbedeployedtotheenduserthelowerthelatency.

Softwarecontrolofvirtualizedresourcesthroughoutthenetworkwillensurethattheoptimumbalanceisachievedbetweenuseofcentralizedcloudresourcesanduseofmorelocaledge-basedresources,dependingonthelatencyrequirements.

Figure19:Cloudrobotfunctiondeploymentaccordingtolatency

AIprovider–deliveringcloudAIandMachineLearning

AI,MLandDL

AddingthepowerofcloudcomputingtoroboticswillenableArtificialIntelligence(AI),MachineLearning(ML)andDeepLearning(DL)tobeappliedtoabroadsetofnewapplicationswhererobotswillbeverymuchmorecapable,powerfulandintelligentthanbefore.Thiswillinturnaffectindustriesrangingfromsecuritytomanufacturing.DefinitionsofAI,MLandDLarenotuniversallyagreed,butinthispaper:

ArtificialIntelligenceisacomputersystemabletoperformtasksnormallyrequiringhumanintelligence(includingvisualperception,speechrecognition,decision-makingandtranslation)

MachineLearningistheuseofalgorithmsandmethodssuchasdecisiontrees,neural

networksandcase-basedreasoningtoimproveperformancethroughtraining

DeepLearningreferstotheuseofmulti-layeredartificialneuralnetworksthatenablethetrainingtobecarriedoutonahugescale,withtheresultthatdecisionsareverymuchbetter.

Theseconceptsenablerobotstobetaughttodoatask–andtolearnhowtoimprove–ratherthansimplyrespondingtoaprograminacontrolsystem.Machinelearningalgorithmsofvariouskindshelpcomputerstointerpretdataandmakedecisionsbasedonthedata.Theycanbetrainedtounderstandwhentheirdecisionsarerightorwrongsothattheirdecisionsgetbetterovertime.

Usingmachineordeeplearning,arobotcanbecomebetterabletocompleteatask,ortoundertakeanewone,throughanimprovedawarenessofitsenvironmentandthecontextofthetask.Theseapproacheswillalsoreducetheneed–andcost–toprogramrobotsforeachnewtask.Thisinturnopenstheprospectsformoreflexibleindustrialrobotsthatcancopewithchangesinfactoryconfigurationsandshorterproductionruns,andcapableofoptimizingtheprocessesthattheyarerequiredtoperform.Innon-industrialsettings,AIandmachinelearning

enableimagesandspokenwordstobeinterpretedandforrobotstorespondappropriately.Accesstothecomputingpowerrequiredformachineanddeeplearningisgreatlyenhancedthroughhigh-speednetworksandtheuseofcloudresources.

Thekeyareasinwhichthesetechnologieswillbeappliedincloudroboticsareinintelligentvisualprocessingforarealearningandautonavigation,facerecognition,andnatural-language(speech)processing.Theserequiredataprocessingpowerbeyondthatwhichissensiblybuiltintoarobotlocally.

Accesstothecomputingpowerrequiredformachineanddeeplearningisgreatlyenhancedthroughhigh-speednetworksandtheuseofcloudresources

28%

26%

16%

12%

7%

3.60%

3%

2010201120122013201420152016

Figure20:ImageNetLargeScaleVisualRecognitionChallenge(ILSVRC)errorrateofclassification(%)[Source:ImageNet]

Thankstotheimprovementincomputingpowerandthecontinuousimprovementofalgorithms,AItechnologyisprogressingrapidly.Asanexample,theerrorrateforobjectclassificationrecognitionintheannualImageNetcontesthasbeenreducedtolessthan3%.Itisworthnotingthatthecurrentvisualrecognitionhasnotyetreachedthecorrectrecognitionrateof100%,whichforhighsecurity

Figure21:objectclassification

applications,suchasautonomousvehicles,isstillachallenge

IntheImageNet2015competition,NVDIAandIBMprovidedtheparticipantswithacloudGPU(NVDIAK80s),demonstratingthefeasibilityofcloudAI.

FrombigdatatechnologystacktoAIstackDeeplearninghasemergedasthebestwaytoperformimageanalysis,inapplicationssuchasmedicalradiography,aswellasinlow-latency

applicationssuchasremovalofstreamingvideocontentthatisinbreachofpolicies.ThebiggestITcompaniessuchasBaidu,GoogleandFacebookhavecreatedspecializedAIinfrastructuretohandleAIusecases,butmanycompaniesdonothavethein-houseexpertiseorresourcestoexploit

thenewtechnologies.Anewbackendinfrastructureisrequired,andthiswillbeachievedwiththeuseofnewacceleratorchipssuchasGPUs(graphicsprocessorunits).Butasthesetechnologiesrequiremoreprocessingpower,puttinginfrastructureintopracticeishardandCIOswillneedtobecomemorefamiliarwiththesenewtrends.

Currently,companies’ITarchitecturesaredesignedtomakeuseoffaulttolerant,lowcoststoragethatallowsforeasyextensionofresourceclustersandcanmitigateequipmentfailure.ButAIrequiresthatbigdataanalyticssoftwareunderstandsbetterhowtoruncompute

workloadsbytakingfulladvantageofthesenewaccelerators.BigdatatechnologystackswillshifttoAIstacksthatwillallowenterprisestocapturemorevaluefromdatathatiscapturedbysensorsonrobotsandelsewhere.

AIPlatform

BigDataCloud

DataCollection&Connectivity

ImplementingcloudAIrequires:verylargestoragecapacityandcomputingpower,forward-lookinginvestmenttoattractsoftwaredevelopment,APIsandopensourcelibraries.HardwareneedstomovefromCPUstoGPUsorevenAIdedicatedprocessors

Robotsrequireslargedatacloudstostorethedata.Therearegreaterdemandsonsecurity,anonymityanddistributioncapacitythaninthepast.

HundredsofmillionsofconnectedsensorsarerequiredtocollecttrainingAIdatafromhumans,assetsandtheenvironment.

Figure22:AIstack[Source:GTIcloudroboticsworkinggroup]

Lowlatencyiscriticalforrobotexperience100msThedelayofthehumanneuralnetworkis100ms,andiftherobotcanrespondwithinthisdelay,itcanbeconsidered"seamless".Toachieve"seamless"robotresponsecapabilitiesneedsvideocapture,videocoding,networ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论