浙江省富阳市第二中学2025届数学高二上期末学业水平测试模拟试题含解析_第1页
浙江省富阳市第二中学2025届数学高二上期末学业水平测试模拟试题含解析_第2页
浙江省富阳市第二中学2025届数学高二上期末学业水平测试模拟试题含解析_第3页
浙江省富阳市第二中学2025届数学高二上期末学业水平测试模拟试题含解析_第4页
浙江省富阳市第二中学2025届数学高二上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省富阳市第二中学2025届数学高二上期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与平行,则的值为()A. B.C. D.2.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形3.某企业甲车间有200人,乙车间有300人,现用分层抽样的方法在这两个车间中抽取25人进行技能考核,则从甲车间抽取的人数应为()A.5 B.10C.8 D.94.已知“”的必要不充分条件是“或”,则实数的最小值为()A. B.C. D.5.已知函数为偶函数,且当时,,则不等式的解集为()A. B.C. D.6.若数列满足,,则数列的通项公式为()A. B.C. D.7.若直线与曲线只有一个公共点,则m的取值范围是()A. B.C.或 D.或8.直线的倾斜角为()A.30° B.60°C.90° D.120°9.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.1010.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.192

里 B.96

里C.48

里 D.24

里11.下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则12.直线(t为参数)被圆所截得的弦长为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的图象在点处的切线方程为___________.14.若“x2-x-6>0”是“x>a”的必要不充分条件,则a的最小值为________.15.抛物线的准线方程是,则实数___________.16.已知实数,满足不等式组,则目标函数的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,圆,点Q在圆上运动,的垂直平分线交于点P.(1)求动点P的轨迹的方程;(2)过点的动直线l交曲线C于A、B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.18.(12分)已知曲线C的方程为(1)判断曲线C是什么曲线,并求其标准方程;(2)过点的直线l交曲线C于M,N两点,若点P为线段MN的中点,求直线l的方程19.(12分)如图,四棱锥中,是边长为2的正三角形,底面为菱形,且平面平面,,为上一点,满足.(1)证明:;(2)求二面角的余弦值.20.(12分)已知抛物线的焦点为F,倾斜角为45°的直线m过点F,若此抛物线上存在3个不同的点到m的距离为,求此抛物线的准线方程21.(12分)已知函数(1)若,求函数的单调区间;(2)若函数有两个不相等的零点,证明:22.(10分)已知等差数列的前项和满足,.(1)求的通项公式;(2)求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由两直线平行可得,即可求出答案.【详解】直线与平行故选:C.2、C【解析】根据立体几何相关知识对各选项进行判断即可.【详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C3、B【解析】根据分层抽样的定义即可求解.【详解】从甲车间抽取的人数为人故选:B4、A【解析】首先解不等式得到或,根据题意得到,再解不等式组即可.【详解】,解得或,因为“”的必要不充分条件是“或”,所以.实数的最小值为.故选:A5、D【解析】结合导数以及函数的奇偶性判断出的单调性,由此化简不等式来求得不等式的解集.【详解】当时,单调递增,,所以单调递增.因为是偶函数,所以当时,单调递减.,,,或.即不等式的解集为.故选:D6、B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B7、D【解析】根据曲线方程的特征,发现曲线表示在轴上方的图象,画出图形,根据图形上直线的三个特殊位置,当已知直线位于直线位置时,把已知直线的解析式代入椭圆方程中,消去得到关于的一元二次方程,由题意可知根的判别式等于0即可求出此时对应的的值;当已知直线位于直线及直线的位置时,分别求出对应的的值,写出满足题意得的范围,综上,得到所有满足题意得的取值范围【详解】根据曲线,得到,解得:;,画出曲线的图象,为椭圆在轴上边的一部分,如图所示:当直线在直线的位置时,直线与椭圆相切,故只有一个交点,把直线代入椭圆方程得:,得到,即,化简得:,解得或(舍去),则时,直线与曲线只有一个公共点;当直线在直线位置时,直线与曲线刚好有两个交点,此时,当直线在直线位置时,直线与曲线只有一个公共点,此时,则当时,直线与曲线只有一个公共点,综上,满足题意得的范围是或故选:D8、B【解析】根据给定方程求出直线斜率,再利用斜率的定义列式计算得解.【详解】直线的斜率,设其倾斜角为,显然,则有,解得,直线的倾斜角为.故选:B9、C【解析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.10、B【解析】由题可得此人每天走的步数等比数列,根据求和公式求出首项可得.【详解】由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得,解得,第此人第二天走里.故选:B11、D【解析】通过举反列即可得ABC错误,利用不等式性质可判断D【详解】A.当时,,但,故A错;B.当时,,故B错;C.当时,,但,故C错;D.若,则,D正确故选:D12、C【解析】求得直线普通方程以及圆的直角坐标方程,利用弦长公式即可求得结果.【详解】因为直线的参数方程为:(t为参数),故其普通方程为,又,根据,故可得,其表示圆心为,半径的圆,则圆心到直线的距离,则该直线截圆所得弦长为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导得到,计算,根据点斜式可得到切线方程.【详解】因此,则,故,又点在函数的图象上,故切线方程为:,即.故答案为:14、3【解析】解出不等式x2-x-6>0,由“x2-x-6>0”是“x>a”的必要不充分条件,求出a的最小值.【详解】由x2-x-6>0,解得x<-2或x>3.因为“x2-x-6>0”是“x>a”的必要不充分条件,所以{x|x>a}是{x|x<-2或x>3}的真子集,即a≥3,故答案为:3.【点睛】本题考查充分条件和必要条件的应用,考查一元二次不等式的解法,属于基础题.15、##【解析】将抛物线方程化为标准方程,根据其准线方程即可求得实数.【详解】抛物线化为标准方程:,其准线方程是,而所以,即,故答案为:16、##【解析】画出可行域,通过平移基准直线到可行域边界来求得的最大值.【详解】,画出可行域如下图所示,由图可知,当时,取得最大值.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,T(0,1)﹒【解析】(1)根据椭圆的定义,结合即可求P的轨迹方程;(2)假设存在T(0,t),设AB方程为,联立直线方程和椭圆方程,代入=0即可求出定点T.【小问1详解】由题可知,,则,由椭圆定义知P的轨迹是以F1、为焦点,且长轴长为的椭圆,∴,∴,∴P的轨迹方程为C:;【小问2详解】假设存在T(0,t)满足题意,易得AB的斜率一定存在,否则不会存在T满足题意,设直线AB的方程为,联立,化为,易知恒成立,∴(*)由题可知,将(*)代入可得:即∴,解,∴在y轴上存在定点T(0,1),使以AB为直径的圆恒过这个点T.18、(1);(2).【解析】(1)根据椭圆的定义即可判断并求解;(2)根据点差法即可求解中点弦斜率和中点弦方程.【小问1详解】设,,E(x,y),∵,,且,点的轨迹是以,为焦点,长轴长为4的椭圆设椭圆C的方程为,记,则,,,,,曲线的标准方程为【小问2详解】根据椭圆对称性可知直线l斜率存在,设,则,由①-②得,,∴l:,即.19、(1)证明见解析;(2).【解析】(1)设为中点,连接,根据,证明平面得到答案.(2)以为原点,,,分别为,,轴建立空间直角坐标系,计算各点坐标,计算平面和平面的法向量,根据向量夹角公式计算得到答案.【详解】(1)设为中点,连接,,∵,∴,又∵底面四边形为菱形,,∴为等边三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以为原点,,,分别为,,轴建立空间直角坐标系,则,,,,,,由,,,即,∴,,,设为平面的法向量,则由,令,得,,∴,设为平面的法向量,则由,令,得,,∴,设二面角的平面角为,则,∴二面角的的余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力,建立空间直角坐标系是解题的关键.20、【解析】设出直线m的方程,利用方程组联立、一元二次方程根的判别式求出与直线m平行的抛物线的切线方程,结合平行线间距离公式进行求解即可.【详解】抛物线的焦点坐标为:,设直线m为,设为与抛物线相切,联立直线与抛物线方程,化简整理可得,,则,解得,且,故两平行线间的距离,解得,故所求的准线方程为21、(1)单调递增区间是(4,+∞),单调递减区间是(0,4);(2)证明见解析.【解析】(1)求的导函数,结合定义域及导数的符号确定单调区间;(2)法一:讨论、时的零点情况,即可得,构造,利用导数研究在(0,2a)恒成立,结合单调性证明不等式;法二:设,由零点可得,进而应用分析法将结论转化为证明,综合换元法、导数证明结论即可.【小问1详解】函数的定义域为(0,+∞),当a=2时,,则令得,x>4;令得,0<x<4;所以,单调递增区间是(4,+∞);单调递减区间是(0,4).【小问2详解】法一:当a≤0时,>0在(0,+∞)上恒成立,故函数不可能有两个不相等的零点,当a>0时,函数在(2a,+∞)上单调递增,在(0,2a)上单调递减,因为函数有两个不相等的零点,则,不妨设,设,(0<x<2a),则,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上单调递减,即>=0,所以,即,又,故,因为,所以,因为函数在(2a,+∞)上单调递增,所以,即法二:不妨设,由题意得,,得,即,要证,只需证,即证:,即,令,,则,所以在区间(1,+∞)单调递减,故<=0,即恒成立因此,所以.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论