版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省佛山一中高一数学第一学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则函数的零点所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)2.半径为,圆心角为的弧长为()A. B.C. D.3.设函数,若是奇函数,则的值是()A.2 B.C.4 D.4.命题“任意实数”的否定是()A.任意实数 B.存在实数C.任意实数 D.存实数5.某几何体的三视图如图所示,它的体积为()A.72π B.48πC.30π D.24π6.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.57.已知定义在R上的函数满足,且当]时,,则()A.B.C.D.8.函数的最小值为()A. B.3C. D.9.已知函数在[2,8]上单调递减,则k的取值范围是()A. B.C. D.10.若指数函数,则有()A.或 B.C. D.且二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若有解,则m的取值范围是______12.命题“”的否定是________________.13.如图,在长方体ABCD—中,AB=3cm,AD=2cm,,则三棱锥的体积___________.14.已知扇形的半径为2,面积为,则该扇形的圆心角的弧度数为______.15.已知函数若,则实数的值等于________16.已知角的终边经过点,则__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数(Ⅰ)若是奇函数,求的值(Ⅱ)当时,求函数在上的值域,判断函数在上是否为有界函数,并说明理由(Ⅲ)若函数在上是以为上界的函数,求实数的取值范围18.已知cosα=-,α第三象限角,求(1)tanα的值;(2)sin(180°+α)cos(-α)sin(-α+180°)+cos(360°+α)sin(-α)tan(-α-180°)的值19.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.20.已知集合,.(1)当时,求,;(2)若,且“”是“”的充分不必要条件,求实数的取值范围.21.求满足下列条件的圆的方程:(1)经过点,,圆心在轴上;(2)经过直线与的交点,圆心为点.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先分析函数的单调性,进而结合零点存在定理,可得函数在区间上有一个零点【详解】解:函数在上为增函数,又(1),(2),函数在区间上有一个零点,故选:2、D【解析】利用弧长公式即可得出【详解】解:,弧长cm故选:D3、D【解析】根据为奇函数,可求得,代入可得答案.【详解】若是奇函数,则,所以,,.故选:D.4、B【解析】根据含全称量词的命题的否定求解.【详解】根据含量词命题的否定,命题“任意实数”的否定是存在实数,故选:B5、C【解析】由题意,结合图象可得该几何体是圆锥和半球体的组合体,根据图中的数据即可计算出组合体的体积选出正确选项.由图知,该几何体是圆锥和半球体的组合体,球的半径是3,圆锥底面圆的半径是3,圆锥母线长为5,由圆锥的几何特征可求得圆锥的高为4,则它的体积.考点:由三视图求面积、体积6、B【解析】采用列举法列举出中元素的即可.【详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、A【解析】由,可得的周期为,利用周期性和单调性化简计算即可得出结果.【详解】因为,所以的周期为当时,,则在上单调递减,所以在上单调递减因为,且所以故故选:A.8、C【解析】运用乘1法,可得,再利用基本不等式求最值即可.【详解】由三角函数的性质知当且仅当,即,即,时,等号成立.故选:C【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.9、C【解析】利用二次函数的单调性可得答案.【详解】因为函数的对称轴为所以要使函数在[2,8]上单调递减,则有,即故选:C10、C【解析】根据指数函数的概念,由所给解析式,可直接求解.【详解】因为是指数函数,所以,解得.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【点睛】本题考查函数与方程的应用,考查转化思想有解计算能力.12、.【解析】根据含有一个量词的命题的否定可得结果【详解】由含有一个量词的命题的否定可得,命题“”的否定为“”故答案为【点睛】对于含有量词的命题的否定要注意两点:一是要改换量词,把特称(全称)量词改为全称(特称)量词;二是把命题进行否定.本题考查特称命题的否定,属于简单题13、1【解析】根据题意,求得棱锥的底面积和高,由体积公式即可求得结果.【详解】根据题意可得,平面,故可得,又因为,故可得.故答案为:.【点睛】本题考查三棱锥体积的求解,涉及转换棱锥的顶点,属基础题.14、【解析】由扇形的面积公式和弧度制的定义,即可得出结果.【详解】由扇形的面积公式可得,所以圆心角为.故答案为:15、-3【解析】先求,再根据自变量范围分类讨论,根据对应解析式列方程解得结果.【详解】当a>0时,2a=-2解得a=-1,不成立当a≤0时,a+1=-2,解得a=-3【点睛】求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.16、【解析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【详解】由题设,,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)是(3)或【解析】(1)根据奇函数定义得,解得的值(2)先分离得再根据单调性求值域,最后根据值域判定是否成立(3)转化为不等式恒成立,再分离变量得最值,最后根据最值求实数的取值范围试题解析:解:()由是奇函数,则,得,即,∴,()当时,∵,∴,∴,满足∴在上为有界函数()若函数在上是以为上界的有界函数,则有在上恒成立∴,即,∴,化简得:,即,上面不等式组对一切都成立,故,∴或18、(1);(2).【解析】(1)根据为第三象限角且求出的值,从而求出的值(1)将原式利用诱导公式化简以后将的值代入即可得解【详解】解:(1)∵cosα=-,α是第三象限角,∴sinα=-=-,tanα==2(2)sin(180°+α)cos(-α)sin(-α+180°)+cos(360°+α)sin(-α)tan(-α-180°)=-sinα•cosα•sinα+cosα•(-sinα)•(-tanα)=-cosαsin2α+sin2α=•+=【点睛】当已知正余弦的某个值且知道角的取值范围时可直接利用同角公式求出另外一个值.关于诱导公式化简需注意“奇变偶不变,符号看象限”19、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据向量的运算法则,求得,即可求解.【小问1详解】解:在平行四边形中,由,,根据向量的运算法则,可得,.【小问2详解】解:因为,可得,所以.20、(1),或;(2)【解析】(1)当时,求出集合,,由此能求出,;(2)推导出,的真子集,求出,,列出不等式组,能求出实数的取值范围【小问1详解】或,当时,,,或;【小问2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《中国网络动力之源》课件
- 诊所劳动合同范本
- 关于策划的合同范本
- 《CT胸部正常解剖》课件
- 工程承包施工协议完整版
- 《针灸治疗学讲稿》课件
- 《gmp偏差处理》课件
- 酒店定点采购合同范本
- 卫生间防水合同
- 纠纷协议书范文
- 110kV变电站电气设备安装施工方案
- 【新教材】人教版(2024)七年级上册英语Unit 2 Were Family!教案
- 【我国绿色债券市场发展现状及问题探究9100字(论文)】
- 人教版七年级数学上册专题01绝对值化简的四种考法(原卷版+解析)
- 山东省商河县重点达标名校2024年中考联考生物试卷含解析
- 《电站锅炉受热面电弧喷涂施工及验收规范》
- 中国世界遗产欣赏智慧树知到期末考试答案章节答案2024年浙江农林大学
- MOOC 实验室安全学-武汉理工大学 中国大学慕课答案
- 学校危险化学品安全教育
- 屋顶绿化养护管理规范
- MOOC 计量经济学-西南财经大学 中国大学慕课答案
评论
0/150
提交评论