版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省海安市2025届高二上数学期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,四棱锥中,底面是边长为的正方形,平面,为底面内的一动点,若,则动点的轨迹在()A.圆上 B.双曲线上C.抛物线上 D.椭圆上2.抛物线的准线方程是,则实数的值为()A. B.C.8 D.3.在中,已知,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形4.已知,,,若、、三个向量共面,则实数A3 B.5C.7 D.95.若,则下列不等式不能成立是()A. B.C. D.6.若双曲线的渐近线方程为,则的值为()A.2 B.3C.4 D.67.已知实数成等比数列,则圆锥曲线的离心率为()A. B.2C.或2 D.或8.椭圆的长轴长是()A.3 B.6C.9 D.49.若公差不为0的等差数列的前n项和是,,且,,为等比数列,则使成立的最大n是()A.6 B.10C.11 D.1210.已知函数的导函数为,且满足,则()A. B.C. D.11.某老师希望调查全校学生平均每天的自习时间.该教师调查了60位学生,发现他们每天的平均自习时间是3.5小时.这里的总体是()A.杨高的全校学生;B.杨高的全校学生的平均每天自习时间;C.所调查的60名学生;D.所调查的60名学生的平均每天自习时间.12.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.14.若点为圆的弦的中点,则弦所在直线方程为________.15.椭圆的两焦点为,,P为C上的一点(P与,不共线),则的周长为______.16.若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为,则的值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知.(1)求直线的方程;(2)平面内的动点满足,到点与点距离的平方和为24,求动点的轨迹方程.18.(12分)已知数列的前n项和为,,,其中.(1)记,求证:是等比数列;(2)设,数列的前n项和为,求证:.19.(12分)在平面直角坐标系中,已知点,,点满足,记点的轨迹为.(1)求的方程;(2)已知,是经过圆上一点且与相切的两条直线,斜率分别为,,直线的斜率为,求证:为定值.20.(12分)已知直线恒过抛物线的焦点F(1)求抛物线的方程;(2)若直线与抛物线交于A,B两点,且,求直线的方程21.(12分)已知函数,为自然对数的底数.(1)当时,证明,,;(2)若函数在上存在极值点,求实数的取值范围.22.(10分)在平面直角坐标系中,点,直线轴,垂足为H,,圆N过点O,与l的公共点的轨迹为(1)求的方程;(2)过M的直线与交于A,B两点,若,求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,得到两两垂直,以点为坐标原点,分别以为轴,建立空间直角坐标系,设,由题意,得到,,再由得到,求出点的轨迹,即可得出结果.【详解】由题意,两两垂直,以点为坐标原点,分别以为轴,建立如图所示的空间直角坐标系,因为底面是边长为的正方形,则,,因为为底面内的一动点,所以可设,因此,,因为平面,所以,因此,所以由得,即,整理得:,表示圆,因此,动点的轨迹在圆上.故选:A.【点睛】本题主要考查立体几何中的轨迹问题,灵活运用空间向量的方法求解即可,属于常考题型.2、B【解析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.3、B【解析】利用诱导公式、两角和的正弦公式化简已知条件,由此判断出三角形的形状.【详解】由,得,得,由于,所以,所以.故选:B4、A【解析】由空间向量共面原理得存在实数,,使得,由此能求出实数【详解】解:,,,、、三个向量共面,存在实数,,使得,即有:,解得,,实数故选:【点睛】本题考查空间向量共面原理的应用,属于基础题5、C【解析】利用不等式的性质可判断ABD,利用赋值法即可判断C,如.【详解】解:因为,所以,所以,,,故ABD正确;对于C,若,则,故C错误.故选:C.6、A【解析】根据双曲线方程确定焦点位置,再根据渐近线方程为求解.【详解】因为双曲线所以焦点在x轴上,又因为渐近线方程为,所以,所以.故选:A【点睛】本题主要考查双曲线的几何性质,还考查了理解辨析的能力,属于基础题.7、C【解析】根据成等比数列求得,再根据离心率计算公式即可求得结果.【详解】因为实数成等比数列,故可得,解得或;当时,表示焦点在轴上的椭圆,此时;当时,表示焦点在轴上的双曲线,此时.故选:C.8、B【解析】根据椭圆方程有,即可确定长轴长.【详解】由椭圆方程知:,故长轴长为6.故选:B9、C【解析】设等差数列的公差为d,根据,且,,为等比数列,求得首项和公差,再利用前n项和公式求解.【详解】设等差数列的公差为d,因为,且,,为等比数列,所以,解得或(舍去),则,所以,解得,所以使成立的最大n是11,故选:C10、C【解析】求出导数后,把x=e代入,即可求解.【详解】因为,所以,解得故选:C11、B【解析】由总体的概念可得答案.【详解】某老师希望调查全校学生平均每天的自习时间,该教师调查了60位学生,发现他们每天的平均自习时间是3.5小时,这里的总体是全校学生平均每天的自习时间.故选:B.12、D【解析】根据长方体中,异面直线和所成角即为直线和所成角,再结合余弦定理即可求解.【详解】解:连接、,如下图所示由图可知,在长方体中,且,所以,所以异面直线和所成角即为,又,,由余弦定理可得∶故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:14、【解析】因为为圆的弦的中点,所以圆心坐标为,,所在直线方程为,化简为,故答案为.考点:1、两直线垂直斜率的关系;2、点斜式求直线方程.15、【解析】结合椭圆的定义求得正确答案.【详解】椭圆方程为,所以,所以三角形的周长为.故答案为:16、±1【解析】由题意得=≠,∴a=-4且c≠-2,则6x+ay+c=0可化为3x-2y+=0,由两平行线间的距离公式,得=,解得c=2或c=-6,∴=±1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)结合点斜式求得直线的方程.(2)设,根据已知条件列方程,化简求得的轨迹方程.【小问1详解】,于是直线的方程为,即【小问2详解】设动点,于是,代入坐标得,化简得,于是动点的轨迹方程为18、(1)证明见解析;(2)证明见解析.【解析】(1)应用的关系,结合构造法可得,根据已知条件及等比数列的定义即可证结论.(2)由(1)得,再应用错位相减法求,即可证结论.【小问1详解】证明:对任意的,,,时,,解得,时,因为,,两式相减可得:,即有,∴,又,则,因为,,所以,对任意的,,所以,因此,是首项和公比均为3的等比数列【小问2详解】由(1)得:,则,,,两式相减得:,化简可得:,又,∴.19、(1);(2)证明见解析.【解析】(1)根据双曲线的定义可得答案;(2)设,过点的的切线方程为,联立此直线与双曲线的方程消元,然后由可得,即可得到,然后可证明.【小问1详解】因为,所以点的轨迹是以为焦点的双曲线的右支,所以,,所以,所以的方程为【小问2详解】设,则,设过点的切线方程为,联立可得由可得,所以所以20、(1)(2)或【解析】(1)把直线化为,得到抛物线的焦点为,求得,即可求得抛物线的方程;(2)联立方程组,得到,,结合,列出方程求得的值,即可求得直线的方程【小问1详解】解:将直线化为,可得直线恒过点,即抛物线的焦点为,所以,解得,所以抛物线的方程为【小问2详解】解:由题意显然,联立方程组,整理得,设,,则,,因为,所以,解得,所以或,所以直线的方程为或21、(1)证明见解析:(2)【解析】(1)代入,求导分析函数单调性,再的最小值即可证明.(2),若函数在上存在两个极值点,则在上有根.再分,与,利用函数的零点存在定理讨论导函数的零点即可.【详解】(1)证明:当时,,则,当时,,则,又因为,所以当时,,仅时,,所以在上是单调递减,所以,即.(2),因为,所以,①当时,恒成立,所以在上单调递增,没有极值点.②当时,在区间上单调递增,因为.当时,,所以在上单调递减,没有极值点.当时,,所以存在,使当时,时,所以在处取得极小值,为极小值点.综上可知,若函数在上存在极值点,则实数.【点睛】本题主要考查了利用导函数求解函数的单调性与最值,进而证明不等式的方法.同时也考查了利用导数分析函数极值点的问题,需要结合零点存在定理求解.属于难题.22、(1);(2).【解析】(1)设出圆N与l的公共点坐标,再探
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 尿素制造与销售合同2024年版2篇
- 2024年度钢筋工程项目的融资与投资合同
- 2024年度钢筋工程变更合同11篇
- 《家庭监控系统方案》课件
- 《生产损失核算》课件
- 《宽带故障解析》课件
- 《金刚石石墨活性炭》课件
- 二零二四年度城市规划分包劳务协议3篇
- 2024年度货物采购合同标的详细描述2篇
- 2024年度建筑外墙防水涂料采购合同3篇
- 新疆维吾尔自治区2023年7月普通高中学业水平考试数学试卷
- 园林植物器官的识别-园林植物生殖器官的识别
- 炼钢厂安全生产教育培训课件
- 拼音四线三格A4打印版
- 机械专业职业生涯发展报告
- 生物技术为精准医疗注入新动力
- MBD数字化设计制造技术
- 部编版道德与法治五年级上册中华民族一家亲第一课时课件
- 2024年金融科技行业的数字化金融培训
- 医疗服务中的人文关怀
- 《商务经理区域》课件
评论
0/150
提交评论