2025届湖北省郧阳中学、恩施高中、随州二中三校高一上数学期末学业质量监测试题含解析_第1页
2025届湖北省郧阳中学、恩施高中、随州二中三校高一上数学期末学业质量监测试题含解析_第2页
2025届湖北省郧阳中学、恩施高中、随州二中三校高一上数学期末学业质量监测试题含解析_第3页
2025届湖北省郧阳中学、恩施高中、随州二中三校高一上数学期末学业质量监测试题含解析_第4页
2025届湖北省郧阳中学、恩施高中、随州二中三校高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省郧阳中学、恩施高中、随州二中三校高一上数学期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给出下列四种说法:①若平面,直线,则;②若直线,直线,直线,则;③若平面,直线,则;④若直线,,则.其中正确说法的个数为()A.个 B.个C.个 D.个2.下列函数中,既是偶函数,又是(0,+∞)上的减函数的是()A. B.C. D.3.若,,则的值为()A. B.-C. D.4.集合的真子集的个数是()A. B.C. D.5.满足2,的集合A的个数是A.2 B.3C.4 D.86.已知函数的部分图象如图所示,下列结论正确的个数是()①②将的图象向右平移1个单位,得到函数的图象③的图象关于直线对称④若,则A.0个 B.1个C.2个 D.3个7.角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角8.已知,,,则的大小关系是()A. B.C. D.9.已知,,则A. B.C. D.10.设命题p:∀x∈0,1,x>xA.∀x∈0,1,x<x3C.∀x∈0,1,x≤x3二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图象恒过定点,点在幂函数的图象上,则=____________12.已知直线平行,则实数的值为____________13.某高中校为了减轻学生过重的课业负担,提高育人质量,在全校所有的1000名高中学生中随机抽取了100名学生,了解他们完成作业所需要的时间(单位:h),将数据按照0.5,1,1,1.5,1.5,2,2,2.5,2.5,3,3,3.5,分成6组,并将所得的数据绘制成频率分布直方图(如图所示).由图中数据可知a=___________;估计全校高中学生中完成作业时间不少于3h的人数为14.已知集合,,则_________.15.函数的单调递增区间为___________.16.已知且,且,函数的图象过定点A,A在函数的图象上,且函数的反函数过点,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断函数的奇偶性,并证明;(2)设函数,若对任意的,总存在使得成立,求实数m的取值范围.18.2020年12月17日凌晨,经过23天月球采样旅行,嫦娥五号返回器携带月球样品成功着陆预定区域,我国首次对外天体无人采样返回任务取得圆满成功,成为时隔40多年来首个完成落月采样并返回地球的国家,标志着我国探月工程“绕,落,回”圆满收官.近年来,得益于我国先进的运载火箭技术,我国在航天领域取得了巨大成就.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度,其中是喷流相对速度,是火箭(除推进剂外)的质量,是推进剂与火箭质量的总和,从称为“总质比”,已知A型火箭的喷流相对速度为.(1)当总质比为200时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的倍,总质比变为原来的,若要使火箭的最大速度至少增加,求在材料更新和技术改进前总质比的最小整数值.参考数据:,.19.已知(1)当时,求的值;(2)若的最小值为,求实数的值;(3)是否存在这样的实数,使不等式对所有都成立.若存在,求出的取值范围;若不存在,请说明理由20.若关于x的不等式的解集为(1)当时,求的值;(2)若,求的值及的最小值21.已知函数f(x)=ln(ex+1)+ax是偶函数,g(x)=f(lnx)(e=2.71828…)(Ⅰ)求实数a的值;(Ⅱ)判断并证明函数g(x)在区间(0,1)上的单调性

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据线面关系举反例否定命题,根据面面平行定义证命题正确性.【详解】若平面,直线,则可异面;若直线,直线,直线,则可相交,此时平行两平面交线;若直线,,则可相交,此时平行两平面交线;若平面,直线,则无交点,即;选D.【点睛】本题考查线面平行关系,考查空间想象能力以及简单推理能力.2、D【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【详解】解:根据题意,依次分析选项:对于,是奇函数,不符合题意;对于,,是指数函数,不是偶函数,不符合题意;对于,,是偶函数,但在上是增函数,不符合题意;对于,,为开口向下的二次函数,既是偶函数,又是上的减函数,符合题意;故选.【点睛】本题考查函数单调性与奇偶性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.3、D【解析】直接利用同角三角函数关系式的应用求出结果.【详解】已知,,所以,即,所以,所以,所以.故选:D.4、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.5、C【解析】由条件,根据集合的子集的概念与运算,即可求解【详解】由题意,可得满足2,的集合A为:,,,2,,共4个故选C【点睛】本题主要考查了集合的定义,集合与集合的包含关系的应用,其中熟记集合的子集的概念,准确利用列举法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题6、C【解析】由函数的图象的顶点坐标求出A,由周期求出,可判断①,由点的坐标代入求得,可得函数的解析式,再根据函数图象的变换规律可判断②,将代入解析式中验证,可判断③;根据三角函数的图象和性质可判断④,即可得到答案【详解】由函数图象可知:,函数的最小正周期为,故,将代入解析式中:,得:由于,故,故①错误;由以上分析可知,将的图象向右平移1个单位,得到函数的图象,故②正确;将代入得,故③错误;由于函数的最小正周期为8,而,故不会出现一个取到最大或最小值另一个取到最小或最大的情况,故,故④正确,故选:C7、B【解析】找到与终边相等的角,进而判断出是第几象限角.【详解】因为,所以角和角是终边相同的角,因为角是第二象限角,所以角是第二象限角.故选:B.8、A【解析】利用对数函数和指数函数的性质求解【详解】解:∵,∴,∵,∴,∵,∴,即,∴故选:A9、C【解析】由已知可得,故选C考点:集合的基本运算10、D【解析】直接根据全称命题的否定,即可得到结论.【详解】因为命题p:∀x∈0,1,x所以¬p:∃x∈0,1,x故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为函数图象恒过定点,则可之令2x-3=1,x=2,函数值为4,故过定点(2,4),然后根据且点在幂函数的图象上,设,故可知=9,故答案为9.考点:对数函数点评:本题考查了对数函数图象过定点(1,0),即令真数为1求对应的x和y,则是所求函数过定点的坐标12、【解析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=x+,y=+,∵两条直线平行,∴,≠,解得m=﹣7综上可得:m=﹣7故答案为﹣7【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题13、①.0.1②.50【解析】利用频率之和为1可求a,由图求出完成作业时间不少于3h的频率,由频数=总数×【详解】由0.5×2a+0.3+0.4+0.5+0.6=1可求a=0.1;由图可知,全校高中学生中完成作业时间不少于3h的频率为0.5×0.1=0.05故答案为:0.1;5014、【解析】由对数函数单调性,求出集合A,再根据交集的定义即可求解.【详解】解:,,,故答案为:.15、【解析】根据复合函数“同增异减”的原则即可求得答案.【详解】由,设,对称轴为:,根据“同增异减”的原则,函数的单调递增区间为:.故答案为:.16、8【解析】由图象平移变换和指数函数的性质可得点A坐标,然后结合反函数的性质列方程组可解.【详解】函数的图象可以由的图象向右平移2各单位长度,再向上平移3个单位长度得到,故点A坐标为,又的反函数过点,所以函数过点,所以,解得,所以.故答案为:8三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)偶函数,证明见解析(2)【解析】(1)为偶函数,利用偶函数定义证明即可;(2)转化为,利用均值不等式可求解的最大值,利用一次函数性质求解的最大值,分析即得解.【小问1详解】为偶函数证明:,故,解得的定义域为,关于原点对称,为偶函数【小问2详解】若对任意的,总存在,使得成立则又,当且仅当,即取等号所以所求实数m的取值范围为18、(1);(2)在材料更新和技术改进前总质比最小整数为74.【解析】(1)代入公式中直接计算即可(2)由题意得,,则,求出的范围即可【详解】(1),(2),.因为要使火箭的最大速度至少增加,所以,即:,所以,即,所以,因为,所以.所以在材料更新和技术改进前总质比的最小整数为74.【点睛】此题考查了函数的实际运用,考查运算求解能力,解题的关键是正确理解题意,列出不等式,属于中档题19、(1)(2)或(3)存在,的取值范围为【解析】(1)先化简,再代入进行求解;(2)换元法,化为二次函数,结合对称轴分类讨论,求出最小值时m的值;(3)换元法,参变分离,转化为在恒成立,根据单调性求出取得最大值,进而求出的取值范围.【小问1详解】,当时,【小问2详解】设,则,,,其对称轴为,的最小值为,则;的最小值为;则综上,或【小问3详解】由,对所有都成立.设,则,恒成立,在恒成立,当时,递减,则在递增,时取得最大值得,∴所以存在符合条件的实数,且m的取值范围为20、(1);(2);.【解析】(1)根据一元二次不等式解集的性质,结合一元二次方程根与系数的关系、根的判别式进行求解即可;(2)根据一元二次不等式解集的性质,结合一元二次方程根与系数的关系、基本不等式进行求解即可.【小问1详解】由题可知关于x的方程有两个根,所以故【小问2详解】由题意关于x的方程有两个正根,所以有解得;同时,由得,所以,由于,所以,当且仅当,即,且,解得时取得“=”,此时实数符合条件,故,且当时,取得最小值21、(I)a=(II)答案见解析【解析】(I)由函数f(x)=ln(ex+1)+ax偶函数,可得f(-x)=f(x),解得a.(II)由(I)可得:f(x)=ln(ex+1).g(x)=f(lnx)=ln(x+1).利用函数单调性的定义确

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论