浙江省强基联盟2023-2024学年高一下学期5月期中考试数学试题_第1页
浙江省强基联盟2023-2024学年高一下学期5月期中考试数学试题_第2页
浙江省强基联盟2023-2024学年高一下学期5月期中考试数学试题_第3页
浙江省强基联盟2023-2024学年高一下学期5月期中考试数学试题_第4页
浙江省强基联盟2023-2024学年高一下学期5月期中考试数学试题_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省强基联盟20232024学年高一下学期5月期中考试数学试题注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.【答案】A【解析】【分析】由给定数集的范围和交集的定义求解.【详解】,又,所以.故选:.2.已知向量,若,则()A.1 B.1 C.3 D.【答案】C【解析】【分析】由向量共线的坐标运算求解.【详解】向量,若,,则有,得.故选:C3.已知,则()A.1 B. C. D.或【答案】B【解析】【分析】根据二倍角公式,转化为关于的二次方程,即可求解.【详解】因为,所以,解得或(舍去).故选:B4.如图,在正方体中,M,N分别为和的中点,则异面直线AM与BN所成角的正弦值为()A. B. C. D.【答案】B【解析】【分析】取AB的中点,的中点,则或其补角为AM与BN所成的角,利用余弦定理解三角形即可.【详解】取AB的中点,的中点,连接,又M,N分别为和的中点,正方体中,,,四边形为平行四边形,有,同理有,则或其补角为AM与BN所成的角,连接EF,设正方体的边长为,则,,,所以,因此,即异面直线AM与BN所成角的正弦值为.故选:B.5.已知命题函数在内有零点,则命题成立的一个必要不充分条件是()A. B.C. D.【答案】D【解析】【分析】先确定函数的单调性,再利用零点存在性定理结合充分、必要条件的定义判定即可.【详解】显然可知函数在上单调递增,由零点存在定理可得,即,解得,要成为命题成立的一个必要不充分条件,则该条件所对应的集合包含,经检验,D选项是命题成立的必要不充分条件.故选:D.6.已知样本数据的平均数为,方差为,若样本数据的平均数为,方差为,则平均数()A.1 B. C.2 D.【答案】C【解析】【分析】根据平均数和方差的性质得到答案.【详解】已知样本数据的平均数为,方差为,则样本数据的方差为,所以,又因为,所以.样本数据的平均数为,所以,解得.故选:C.7.若实数,则的最小值为()A. B. C. D.【答案】D【解析】【分析】首先变形,再利用基本不等式求最小值.【详解】,当且仅当,即时,等号成立.故选:D8.已知球的半径,球面上有三点A,B,C,满足,点在球面上运动,则当四面体的体积取得最大值时,()A. B. C.13 D.【答案】A【解析】【分析】首先求外接圆的半径,再根据球的半径,求球心到平面的距离,从而确定点的位置,根据几何关系求.【详解】因为,所以,因此外接圆半径为,因为球的半径,所以球心到平面ABC的距离为5,.要使得四面体的体积最大,只要点到平面ABC的距离最大,并且最大距离为,所以.故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数,则下列结论正确的是()A.的图象向左平移个单位长度后得到函数的图象B.直线是图象的一条对称轴C.在上单调递减D.的图象关于点对称【答案】BCD【解析】【分析】利用三角函数的图象与性质一一分析选项即可.【详解】对于A,的图象向左平移个单位长度后得到的图象,故A错误.对于B,,故B正确.对于C,当时,,故C正确.对于D,,故D正确.故选:BCD10.已知正方体的棱长为2,棱AB,BC的中点分别为E,F,点在上底面上(包含边界),则下列结论正确的是()A.存在点,使得平面平面B.不存在点,使得直线平面EFGC.三棱锥的体积不变D.存在点,使得平面【答案】ACD【解析】【分析】取的中点与E,F构成平面EFG,利用面面平行的判定定理证明,即可判断A,分别取的中点,与E,F构成正六边形,利用线面平行判定定理证明,即可判断B,求出三棱锥的体积即可判断C,当点与点重合时,有平面,利用线面垂直性质定理和判定定理证明,即可判断D.【详解】对于,取的中点与E,F构成平面EFG(如图),因为棱AB,BC的中点分别为E,F,所以,因为平面,平面,所以平面,又棱AB,的中点分别为E,G,所以,因为平面,平面,所以平面,又,平面,平面,所以平面平面,故A正确;对于,分别取的中点,与E,F构成正六边形(如图),因为棱,的中点分别为M,N,所以,因为平面,平面,所以平面,此时点G的轨迹为线段NP,故B错误.对于,因为点到下底面ABCD的距离不变为正方体的棱长2,三角形面积为,所以三棱锥的体积不变,为,故C正确;对于,当点与点重合,连接,可得平面,(如图),下证:平面,由正方体中可得平面,因为平面,所以,因为底面为正方形,所以,因为平面,所以平面.因平面,所以,由正方体中可得平面,因为平面,所以,因为侧面为正方形,所以,因为平面,所以平面.因为平面,所以,又因为平面,所以平面,故D正确.故选:ACD11.如图,已知长方形中,,,,且,则下列结论正确的是()A.当时, B.当时,C.对任意,不成立 D.若,则【答案】ABD【解析】【分析】以为原点,建系,通过坐标运算来判断A、B选项;C选项,假设,求出的值,即可判断;D选项,列式子,由对应坐标相等,得到一个方程组,用来表示和,将转化为关于的二次函数,求出函数的值域,即可得出结论.【详解】以为原点,、所在直线分别为轴、轴,建立如图所示的平面直角坐标系,则,,,,因为,所以,即,对于A选项,当时,,则,,,所以,故A正确;对于B选项,当时,,则,,所以,故B正确;对于C选项,,,由,得,所以当时,,故C错误;对于D选项,因为,则,所以,解得,所以,,因为在上单调递增,所以,,所以,故D正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.若为纯虚数(为虚数单位),则实数______.【答案】2【解析】【分析】由复数的乘法和纯虚数的定义求解.【详解】因为,所以当时,为纯虚数.故答案为:213.对于任意的恒成立,则实数的取值范围为______.【答案】【解析】【分析】首先利用三角恒等变换,再利用三角函数的性质,参变分离为,再换元,转化为利用函数的单调性求函数的最值.【详解】不等式,对任意的恒成立,,则则恒成立,令,所以恒成立,则,设在单调递增,所以的最大值为,所以,所以的取值范围为.故答案为:14.已知勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终与两平面都接触,因此它能像球一样来回滚动(如图甲),利用这一原理,科技人员发明了转子发动机.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体(如图乙),若勒洛四面体ABCD能够容纳的最大球的表面积为,则正四面体ABCD的内切球的半径为______.【答案】【解析】【分析】根据正四面体的性质可知,正四面体内切球的球心和正四面体的中心及勒洛四面体能容纳的最大球的球心重合,设出正四面体的边长,△的中心,根据三点共线且垂直于平面,在直角三角形中列勾股定理求出边,进而求解.【详解】设正四面体ABCD的棱长为,根据题意,勒洛四面体能够容纳的最大球与勒洛四面体的弧面相切,如图1,设点为该球与勒洛四面体的一个切点,为该球球心,由正四面体的性质可知该球球心为正四面体ABCD的中心,即为正四面体ABCD外接球的球心(内切球的球心),则BO为正四面体ABCD的外接球的半径,勒洛四面体能够容纳的最大球的半径为OE,连接BE,则B,O,E三点共线,此时,由题意得,所以,所以,如图2,记为的中心,连接BM,AM,由正四面体的性质可知在AM上,因为,所以,则,因为,即,解得,所以,解得,所以,即OM为正四面体ABCD内切球的半径.故答案为:.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量,且与的夹角为.(1)求和;(2)若向量与所成的角是锐角,求实数的取值范围.【答案】(1),(2).【解析】【分析】(1)由向量数量积和模的坐标运算,代入中求出的值,再求出的坐标,求;(2)且与不同向共线,求实数的取值范围.【小问1详解】向量,且与的夹角为.则,,,由,有,解得,所以,得.【小问2详解】,由得,又,,若与共线,则有,解得,此时与同向平行时,不合题意,所以且.则实数的取值范围.16.已知函数是定义在上的偶函数.(1)求函数的解析式;(2)对于任意的,不等式恒成立,求的取值范围.【答案】(1)(2)【解析】【分析】(1)根据偶函数可得恒成立,从而可得结果;(2)当时,令.原不等式转化为,令,可证为增函数,从而可得结果.小问1详解】函数是定义在上的偶函数,,可得恒成立,即,因为在上不恒成立,,所以的解析式为.【小问2详解】由(1)知,当时,令.不等式恒成立,等价于恒成立,恒成立,则,令,任取,则,因为,所以,所以为增函数,所以当时.所以的取值范围为.17.如图,在三棱锥中,已知.(1)求三棱锥体积;(2)求侧面与侧面所成的二面角的余弦值.【答案】(1)(2)【解析】【分析】(1),,可求,,平面ABC,勾股定理求出,可求三棱锥的体积;(2)过点C作于点D,作于点E,结合定义可证得∠CED为侧面SBC与侧面SAB所成的二面角的平面角,求出所需边长,即可求解.【小问1详解】∵,∴,,,平面,∴平面.又∵,,∴.又∵,,∴,∴.【小问2详解】过点C作于点D,作于点E,连接CE.平面,平面,则平面平面,平面平面,,面,∴平面,由平面,有,又,,平面,则平面,平面,则有,∴由,知为侧面与侧面所成的二面角的平面角.中,,,则又,,中,,则,得,同理,中,,∴,即侧面与侧面所成的二面角的余弦值为.18.在锐角中,角A,B,C的对边分别为a,b,c,且.(1)求角;(2)若,求的面积的取值范围;(3)若,且,求实数的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)已知条件利用正余弦定理边化角,结合倍角公式化简得,求角;(2)由正弦定理有,由,得,所以可求取值范围;(3)由,可得,由,可求实数的取值范围.【小问1详解】由,得,由余弦定理得,再由正弦定理及倍角公式得,得,即,在锐角中,有.【小问2详解】,,则.由正弦定理,有,.又是锐角三角形,有,得,则,所以.即的面积S的取值范围;小问3详解】,由正弦定理,得,,,即又,且,,设,函数,,任取,则,,,当,,,即,当,,,即,即在上单调递减,在上单调递增,,,,,则实数的取值范围为.【点睛】方法点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理实现“边化角”,出现边的二次式一般采用到余弦定理实现“角化边”.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.19.在复数域中,对于正整数,满足的所有复数称为次单位根,若一个次单位根满足对任意小于的正整数,都有,则称该次单位根为次本原单位根,规定1次本原单位根为1,例如当时存在四个次单位根,因为,,因此只有两个次本原单位根,对于正整数,设次本原单位根为,则称多项式为次本原多项式,记为,规定,例如,请回答以下问题.(1)直接写出次单位根,并指出哪些是次本原单位根(无需证明);(2)求出,并计算,由此猜想(无需证明);(3)设所有次本原单位根在复平面内对应的点为,复平面内一点所对应的复数满足,求的取值范围.【答案】(1)全部的次单位根是,,,,,,,;其中是本原单位根的是,,,.(2),,.(3)【解析】【分析】(1)先探究一个单位根是本原单位根的充要条件,然后根据该条件给出次单位根和其中的本原单位根;(2)先证明对任意都有,再利用该结论直接得到结果;(3)利用的定义及复数的几何意义求解即可.【小问1详解】先证明:对,次单位根是本原单位根的充要条件是和的最大公约数为1.我们记,则全部的次单位根是.设,考虑:若和的最大公约数,则,从而不是本原单位根.若不是本原单位根,设,,则由可知是的倍数,设为和的最大公约数,则是的倍数,而和没有大于1的公约数,故是的倍数,所以由可知,得.这就得到结论:对,次单位根是本原单位根的充要条件是和的最大公约数为1.下面回到原题,考虑.此时,全部的次单位根是,依次列出即是:,,,,,,,.根据上面的结论,其中是本原单位根的是,即,,,.【小问2详解】对,我们考虑全体次单位根.每个均可表示为,其中是正奇数,.则,所以是次单位根.又因为,且和的最大公约数为1,故是次本原单位根.而时,是1次本原单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论