湖北省孝感市文昌中学2025届高二数学第一学期期末教学质量检测模拟试题含解析_第1页
湖北省孝感市文昌中学2025届高二数学第一学期期末教学质量检测模拟试题含解析_第2页
湖北省孝感市文昌中学2025届高二数学第一学期期末教学质量检测模拟试题含解析_第3页
湖北省孝感市文昌中学2025届高二数学第一学期期末教学质量检测模拟试题含解析_第4页
湖北省孝感市文昌中学2025届高二数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省孝感市文昌中学2025届高二数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.2.已知函数有两个极值点m,n,且,则的最大值为()A. B.C. D.3.若定义在R上的函数的图象如图所示,为函数的导函数,则不等式的解集为()A. B.C. D.4.已知、是平面直角坐标系上的直线,“与的斜率相等”是“与平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分条件也非必要条件5.已知数列满足,则()A.32 B.C.1320 D.6.已知函数的导函数的图像如图所示,则下列说法正确的是()A.是函数的极大值点B.函数在区间上单调递增C.是函数的最小值点D.曲线在处切线的斜率小于零7.已知空间四边形,其对角线、,、分别是边、的中点,点在线段上,且使,用向量,表示向量是A. B.C. D.8.如图,在平行六面体中,AC与BD的交点为M.设,则下列向量中与相等的向量是()A. B.C. D.9.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则10.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.311.设集合,集合,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.直线恒过定点()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为数列{}前n项和,若,且),则=___14.已知直线与双曲线交于两点,则该双曲线的离心率的取值范围是______15.不等式的解集是________.16.已知斜率为的直线与椭圆相交于不同的两点A,B,M为y轴上一点且满足|MA|=|MB|,则点M的纵坐标的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)令,求数列前n项和.18.(12分)已知为数列的前项和,且.(1)求的通项公式;(2)若,求的前项和.19.(12分)如图,直四棱柱中,底面是边长为的正方形,点在棱上.(1)求证:;(2)从条件①、条件②、条件③这三个条件中选择两个作已知,使得平面,并给出证明.条件①:为的中点;条件②:平面;条件③:.(3)在(2)的条件下,求平面与平面夹角的余弦值.20.(12分)在如图所示的几何体中,四边形是正方形,四边形是梯形,,,平面平面,且(1)求证:平面;(2)求平面与平面夹角的余弦值21.(12分)已知四棱锥的底面是矩形,底面,且,设E、F、G分别为PC、BC、CD的中点,H为EG的中点,如图.(1)求证:平面;(2)求直线FH与平面所成角的大小.22.(10分)已知函数.(1)求的导数;(2)求函数的图象在点处的切线方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】运用点差法即可求解【详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C2、C【解析】对求导得,得到m,n是两个根,由根与系数的关系可得m,n的关系,然后构造函数,利用导数求单调性,进而得最值.【详解】由得:m,n是两个根,由根与系数的关系得:,故,令记,则,故在上单调递减.故选:C3、A【解析】由函数单调性得出和的解,然后分类讨论解不等式可得【详解】由图象可知:在为正,在为负,,可化为:或,解得或故选:A4、D【解析】根据直线平行与直线斜率的关系,即可求解.【详解】解:与的斜率相等”,“与可能重合,故前者不可以推出后者,若与平行,与的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分条件也非必要条件,故选:D.5、A【解析】先令,求出,再当时,由,可得,然后两式相比,求出,从而可求出,进而可求得答案【详解】当时,,当时,由,可得,两式相除可得,所以,所以,故选:A6、B【解析】根据导函数的图象,得到函数的单调区间与极值点,即可判断;【详解】解:由导函数的图象可知,当时,当时,当时,当或时,则在上单调递增,在上单调递减,所以函数在处取得极小值即最小值,所以是函数的极小值点与最小值点,因为,所以曲线在处切线的斜率大于零,故选:B7、C【解析】根据所给的图形和一组基底,从起点出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论【详解】解:故选:【点睛】本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程,属于基础题8、B【解析】根据代入计算化简即可.【详解】故选:B.9、C【解析】对于A、B、D均可能出现,而对于C是正确的10、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C11、A【解析】解不等式求集合,然后判断两个集合的关系【详解】,解得,故,可化为或,解得或,故,故“”是“”的充分不必要条件故选:A12、A【解析】将直线方程变形得,再根据方程即可得答案.【详解】解:由得到:,∴直线恒过定点故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】第一步找出数列周期,第二步利用周期性求和.【详解】,,,,,,可知数列{}是周期为4的周期数列,所以故答案为:2.14、【解析】分析可知,由可求得结果.【详解】双曲线的渐近线方程为,由题意可知,.故答案为:.15、【解析】把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集【详解】不等式得,故,故答案为:.16、【解析】设直线的方程为,由消去并化简得,设,,,解得..由于,所以是垂直平分线与轴的交点,垂直平分线方程为,令得,由于,所以.也即的纵坐标的取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先通过等比数列的基本量运算求出公比,进而求出通项公式;(2)结合(1)求出,然后根据错位相减法求得答案.【小问1详解】设等比数列公比为q,,,,(负值舍去),所以.【小问2详解】,,所以,解得:.18、(1)(2)【解析】(1)由与的关系结合等比数列的定义得出的通项公式;(2)由(1)得出,再由错位相减法得出的前项和.【小问1详解】因为,所以当时,,所以.当时,,两式相减,得,所以,所以,所以是以1为首项,2为公比的等比数列,所以.【小问2详解】由(1)得,所以,两边同乘以,得,两式相减,得,所以.19、(1)证明见解析;(2)答案见解析;(3).【解析】(1)连结,,由直四棱柱的性质及线面垂直的性质可得,再由正方形的性质及线面垂直的判定、性质即可证结论.(2)选条件①③,设,连结,,由中位线的性质、线面垂直的性质可得、,再由线面垂直的判定证明结论;选条件②③,设,连结,由线面平行的性质及平行推论可得,由线面垂直的性质有,再由线面垂直的判定证明结论;(3)构建空间直角坐标系,求平面、平面的法向量,应用空间向量夹角的坐标表示求平面与平面夹角的余弦值.【小问1详解】连结,,由直四棱柱知:平面,又平面,所以,又为正方形,即,又,∴平面,又平面,∴.【小问2详解】选条件①③,可使平面.证明如下:设,连结,,又,分别是,的中点,∴.又,所以.由(1)知:平面,平面,则.又,即平面.选条件②③,可使平面.证明如下:设,连结.因为平面,平面,平面平面,所以,又,则.由(1)知:平面,平面,则.又,即平面.【小问3详解】由(2)可知,四边形为正方形,所以.因为,,两两垂直,如图,以为原点,建立空间直角坐标系,则,,,,,,所以,.由(1)知:平面的一个法向量为.设平面的法向量为,则,令,则.设平面与平面的夹角为,则,所以平面与平面夹角的余弦值为.20、(1)证明见解析(2)【解析】(1)先利用正方形和梯形的性质证明线面平行,然后再根据线面平行证明面面平行即可(2)根据题意建立空间直角坐标系,写出相关点的坐标和相关的向量,然后分别求出平面与平面的一个法向量,最后求出平面与平面夹角的余弦值【小问1详解】四边形是正方形,可得:又平面,平面则有:平面四边形是梯形,可得:又平面,平面则有:平面又故平面平面【小问2详解】依题意知两两垂直,故以为原点,所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系.则有:,,,可得:,,设平面的一个法向量,则有:取,可得:设平面的一个法向量,则有:取,可得:设平面与平面的夹角为,则故平面与平面夹角的余弦值为21、(1)证明见解析(2)【解析】(1)连接CH,延长交PD于点K,连接BK,根据E、F、G分别为PC、BC、CD的中点,易得,再利用线面平行的判定定理证明.(2)建立空间直角坐标,求得的坐标,平面PBC一个法向量,代入公式求解.【详解】(1)如图所示:连接CH,延长交PD于点K,连接BK,因为设E、F、G分别为PC、BC、CD的中点,所以H为CK的中点,所以,又平面平面,所以平面;(2)建立如图所示直角坐标系则,所以,设平面PBC一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论