版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省张掖市数学高一上期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则()A. B.C. D.2.要得到函数f(x)=cos(2x-)的图象,只需将函数g(x)=cos2x的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移单位长度 D.向右平移个单位长度3.已知,,且,则的最小值为()A. B.C.2 D.14.与直线垂直,且在轴上的截距为-2的直线方程为()A. B.C. D.5.集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},则A∩B等于()A. B.C. D.,6.已知x,y满足,求的最小值为()A.2 B.C.8 D.7.已知正方体,则异面直线与所成的角的余弦值为A. B.C. D.8.已知直二面角,点,,为垂足,,,为垂足.若,则到平面的距离等于A. B.C. D.19.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x10.设全集U=R,集合A={x|0<x<4},集合B={x|3≤x<5},则A∩(∁UB)=()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________12.已知上的奇函数是增函数,若,则的取值范围是________13.________14.已知是偶函数,则实数a的值为___________.15.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,平面,,,,则该“阳马”外接球的表面积为________.16.给出下列命题“①设表示不超过的最大整数,则;②定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个;③已知函数为奇函数,在区间上有最大值5,那么在上有最小值.其中正确的命题序号是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象(部分)如图所示,(1)求函数的解析式和对称中心坐标;(2)求函数的单调递增区间18.已知函数是定义在上的偶函数,且.(1)求实数的值,并证明;(2)用定义法证明函数在上增函数;(3)解关于的不等式.19.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:0050(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;(Ⅱ)将图象上所有点向左平行移动个单位长度,得到的图象.若图象的一个对称中心为,求的最小值20.已知全集,,.(1)当时,,;(2)若,求实数a的取值范围,21.已知角的顶点为坐标原点,始边为轴的非负半轴,终边经过点,且.(1)求实数的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】先求出,再分子分母同除以余弦的平方,得到关于正切的关系式,代入求值.【详解】由得,,所以故选:D2、D【解析】利用函数的图象变换规律即可得解.【详解】解:,只需将函数图象向右平移个单位长度即可故选.【点睛】本题主要考查函数图象变换规律,属于基础题3、A【解析】由已知条件得出,再将代数式与相乘,展开后利用基本不等式可求得的最小值.【详解】已知,且,,由基本不等式可得,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题考查利用基本不等式求代数式的最值,考查的妙用,考查计算能力,属于基础题.4、A【解析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为,∴所求直线方程为,整理为故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).5、A【解析】由得,得,则,故选A.6、C【解析】利用两点间的距离公式结合点到直线的距离公式即可求解.【详解】解:表示点与直线上的点的距离的平方所以的最小值为点到直线的距离的平方所以最小值为:故选:C.7、A【解析】将平移到,则异面直线与所成的角等于,连接在根据余弦定理易得【详解】设正方体边长为1,将平移到,则异面直线与所成的角等于,连接.则,所以为等边三角形,所以故选A【点睛】此题考查立体几何正方体异面直线问题,异面直线求夹角,将其中一条直线平移到与另外一条直线相交形成的夹角即为异面直线夹角,属于简单题目8、C【解析】如图,在平面内过点作于点因为为直二面角,,所以,从而可得.又因为,所以面,故的长度就是点到平面的距离在中,因为,所以因为,所以.则在中,因为,所以.因为,所以,故选C9、D【解析】A中,周期为,不是偶函数;B中,周期为,函数为奇函数;C中,周期为,函数为奇函数;D中,周期为,函数为偶函数10、D【解析】先求∁UB,然后求A∩(∁UB)【详解】∵(∁UB)={x|x<3或x≥5},∴A∩(∁UB)={x|0<x<3}故选D【点睛】本题主要考查集合的基本运算,比较基础二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.12、【解析】先通过函数为奇函数将原式变形,进而根据函数为增函数求得答案.【详解】因为函数为奇函数,所以,而函数在R上为增函数,则.故答案为:.13、【解析】根据对数运算、指数运算和特殊角的三角函数值,整理化简即可.【详解】.故答案为:.14、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:15、【解析】以,,为棱作长方体,长方体的对角线即为外接球的直径,从而求出外接球的半径,进而求出外接球的表面积.【详解】由题意,以,,为棱作长方体,长方体的对角线即为外接球的直径,设外接球的半径为,则故.故答案为:【点睛】本题考查了多面体外接球问题以及球的表面积公式,属于中档题.16、①②【解析】对于①,如果,则,也就是,所以,进一步计算可以得到该和为,故①正确;对于②,我们把分成四组:,由题设可知不是“闭集”中的元素,其余三组元素中的每组元素必定在“闭集”中同时出现或同时不出现,故所求的“闭集”的个数为,故②正确;对于③,因为在上的最大值为,故在上的最大值为,所以在上的最小值为,在上的最小值为,故③错.综上,填①②点睛:(1)根据可以得到,因此,这样的共有,它们的和为,依据这个规律可以写出和并计算该和(2)根据闭集的要求,中每组元素都是同时出现在闭集中或者同时不出现在闭集中,故可以根据子集的个数公式来计算(3)注意把非奇非偶函数转化为奇函数或偶函数来讨论三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),对称中心;(2),【解析】(1)由函数的图象得出A,求出函数的四分之一周期,从而得出ω,代入最高点坐标求出φ,得函数的解析式,进而求出对称中心坐标;(2)令,从而得到函数的单调递增区间.【详解】(1)由题意可知,,,,又当时,函数取得最大值2,所以,,又因为,所以,所以函数,令,,得对称中心,.(2)令,解得,,所以单调递增区间为,【点睛】求y=Asin(ωx+φ)的解析式,条件不管以何种方式给出,一般先求A,再求ω,最后求φ;求y=Asin(ωx+φ)的单调递增区间、对称轴方程、对称中心坐标时,要把ωx+φ看作整体,分别代入正弦函数的单调递增区间、对称轴方程、对称中心坐标分别求出x,这儿利用整体的思想;求y=Asin(ωx+φ)的最大值,需要借助正弦函数的最大值的求解方法即可18、(1),证明见解析(2)证明见解析(3)【解析】(1)由偶函数性质求,由列方程求,再证明;(2)利用单调性定义证明函数的单调性;(3)利用函数的性质化简可求.【小问1详解】因为函数是定义在R上的偶函数∴,综上,从而【小问2详解】证明:因为设,所以又,∴所以∴在上为增函数;【小问3详解】∵.∵偶函数在上为增函数.在上为减函数∴19、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据表中已知数据,解得.数据补全如下表:00500且函数表达式为.(Ⅱ)由(Ⅰ)知,得因为对称中心为,令,解得,由于函数的图象关于点成中心对称,令,解得,.由可知,当时,取得最小值.考点:“五点法”画函数在某一个周期内的图象,三角函数的平移变换,三角函数的性质20、(1),或;(2)【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年土地整治项目土地抵押合同范例3篇
- 2024年某物业管理公司与某小区关于物业服务合同
- 房屋租赁合同模板合集五篇
- 七年级第一学期生物教案模板
- 跟岗实习工作总结范文
- 举行春游活动方案
- 配音比赛策划书
- 店长述职报告15篇
- 学生竞选演讲稿怎么写才能吸引人?【5篇】
- 投标承诺书集锦15篇
- 社区居家养老方案
- 2024年英语专业四级考试真题及详细答案
- 输液巡视不及时品管圈课件
- 中班自主游戏总结汇报
- 加油站防偷盗与防灾安全培训
- 玻璃制造企业的管理与技术创新
- 《护理病人隐私保护措施》
- MHT:中小学生心理健康检测(含量表与评分说明)
- 企业战略管理顾问聘用合同
- 贵州壮丽山水文化之旅
- 辽宁省朝阳市朝阳县2023-2024学年九年级上学期期末数学试题
评论
0/150
提交评论