专题232解直角三角形(举一反三)(沪科版)(原卷版)_第1页
专题232解直角三角形(举一反三)(沪科版)(原卷版)_第2页
专题232解直角三角形(举一反三)(沪科版)(原卷版)_第3页
专题232解直角三角形(举一反三)(沪科版)(原卷版)_第4页
专题232解直角三角形(举一反三)(沪科版)(原卷版)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题23.2解直角三角形【十大题型】【沪科版】TOC\o"13"\h\u【题型1直角三角形中直接解直角三角形】 1【题型2构造直角三角形解直角三角形】 2【题型3网格中解直角三角形】 3【题型4坐标系中解直角三角形】 5【题型5四边形中解直角三角形】 6【题型6利用解直角三角形求不规则图形的面积】 7【题型7解直角三角形的应用之坡度坡比问题】 8【题型8解直角三角形的应用之俯角仰角问题】 10【题型9解直角三角形的应用之方向角问题】 12【题型10解直角三角形的应用之实物建模问题】 13【知识点解直角三角形】已知条件图形解法对边邻边斜边对边邻边斜边ACBb已知斜边和一个锐角已知两直角边已知斜边和一条直角边【题型1直角三角形中直接解直角三角形】【例1】(2023秋·上海青浦·九年级校考期中)如果AD是Rt△ABC的斜边BC上的高,BC=a,∠B=βA.asinβcosβ B.acos2【变式11】(2023秋·陕西西安·九年级校考期中)如图,在Rt△ABC中,∠B=90°,E是BC边上一点,过点E作ED⊥AC,垂足为D,AB=4

【变式12】(2023·福建泉州·校联考模拟预测)如图,在△ABC中,∠B=90°,∠A=30°

(1)若D运动到某个位置时,∠CDB=60°,CD=10(2)若点D运动到某个位置时,∠CDB=45°,AD=6【变式13】(2023秋·广西梧州·九年级统考期末)如图,在Rt△ABC中,∠C=90°,AC=8,sinB=45,D为线段

【题型2构造直角三角形解直角三角形】【例2】(2023秋·广西梧州·九年级统考期末)已知在△ABC中,AB=122,AC=13,cosB=A.7 B.8 C.8或17 D.7或17【变式21】(2023秋·上海静安·九年级上海市市北初级中学校考期末)如图,已知将△ABC沿角平分线BE所在直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠

【变式22】(2023·江苏·统考中考真题)如图,3个大小完全相同的正六边形无缝隙、不重叠的拼在一起,连接正六边形的三个顶点得到△ABC,则tan∠ACB

【变式23】(2023秋·上海静安·九年级上海市民办扬波中学校考期中)如图,△ABC中,AB=AC=5,BC=6,BD⊥AC于点D,将△BCD绕点B逆时针旋转,旋转角的大小与∠CBA相等,如果点C、D

【题型3网格中解直角三角形】【例3】(2023·湖北武汉·统考三模)如图是由小正方形组成的8×8网格,每个小正方形的顶点叫做格点,A,C两个点是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图中,点B是格点,先画线段AB的中点D,再在AC上画点E,使AD=

(2)在图中,点B在格线上,过点C作AB的平行线CF;

(3)在图中,点B在格线上,在AB上画点G,使tan∠

【变式31】(2023秋·江苏苏州·九年级统考期中)如图,A,B,C,D均为网格图中的格点,线段AB与CD相交于点P,则∠APD的正切值为.【变式32】(2023秋·福建泉州·九年级统考期末)如图,A、B、C、D是正方形网格的格点,AB、CD交于点O,则cos∠BOD【变式33】(2023·湖北武汉·统考模拟预测)如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点,△ABC

(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点C绕点D旋转180°得到点F,画出点F;再在边AB上画点G,使EG∥(2)在图(2)中,在边AB上找一点P,使PA=PC;再在线段AC上找一点Q【题型4坐标系中解直角三角形】【例4】(2023·河南洛阳·校联考一模)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,∠BOC=60°,顶点C的坐标为(a,3),y=kx的图象与菱形对角线AO交于点

A.-23 B.-33 C.【变式41】(2023·广东湛江·岭师附中校联考一模)如图,在△ABO中,AB⊥OB,AB=3,OB=1,把△ABO绕点O顺时针旋转120°

【变式42】(2023秋·黑龙江哈尔滨·九年级哈尔滨市第十七中学校校考开学考试)如图:已知一次函数图像与x轴、y轴分别交于点A、点B.OB=3,tan

(1)求直线AB的解析式;(2)若点C在x轴上方的直线AB上,△AOC的面积为15,求tan【变式43】(2023秋·黑龙江哈尔滨·九年级校考开学考试)在平面直角坐标系中,点O为坐标原点,直线y=kx+6k交x轴于点B,交y轴于点

(1)如图1,求k的值;(2)如图2,点H在AB上,点F在OB上,连接FH、OH,且FH=OH,过点F作AB的垂线,垂足为点S,设点H的横坐标为t,-3<t<-1,线段SH的长为d(3)如图3,在(2)的条件下,将线段OH绕点O顺时针旋转60°得到线段OE,连接AE并延长交x轴于C,连接HC,点K是HC的中点,连接EK,当tan∠SHF=【题型5四边形中解直角三角形】【例5】(2023·海南儋州·海南华侨中学校联考模拟预测)如图,在矩形ABCD中,AB=3,AD=4,点E为对角线BD上一点,连接AE,过点E作EF⊥AE交BC于点F.连接AF交BE于点O,若AB=AE,则线段AF与

【变式51】(2023秋·陕西渭南·九年级统考期中)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=3,∠ABE=30°

A.1 B.2 C.3 D.2【变式52】(2023·浙江·模拟预测)已知菱形的一个内角为60°,一条对角线的长为43,则另一条对角线的长为【变式53】(2023·黑龙江哈尔滨·统考模拟预测)如图,已知平行四边形ABCD中,E为BC边上一点,连接AE、DE,若AD=DE,AE=DC,BE=4【题型6利用解直角三角形求不规则图形的面积】【例6】(2023春·江苏·九年级专题练习)在△ABC中,∠B=45°,AC=4,则△ABC面积的最大值为(

)A.42 B.42+4 C.8 D.82+8【变式61】(2023秋·上海·九年级上海外国语大学附属大境初级中学校考期中)已知:如图,在△ABC中,AB=AC=5,BC=8

(1)试求cosB(2)试求△BCD【变式62】(2023春·福建漳州·九年级统考期中)阅读下列材料:如图1.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,可以得到:S证明:过点A作AD⊥BC,垂足为D.在Rt△ABD中,sinB∴AD∴S同理:SSΔABC∴S(1)通过上述材料证明:a(2)运用(1)中的结论解决问题:如图2,在ΔABC中,∠B=15°,(3)如图3,为了开发公路旁的城市荒地,测量人员选择A、B、C三个测量点,在B点测得A在北偏东75°方向上,沿笔直公路向正东方向行驶18km到达C点,测得A在北偏西45°方向上,根据以上信息,求A、B、C三点围成的三角形的面积.(本题参考数值:sin15°≈0.3,sin120°≈0.9,2≈1.4,结果取整数)【变式63】(2023春·全国·九年级专题练习)已知在△ABC中,∠ACB=135°,AC=8,D、E分别是边BC、AB上的一点,若tan∠DEA=2,DE=5,S△DEB=4,求四边形ACDE的面积.【题型7解直角三角形的应用之坡度坡比问题】【例7】(2023·山西阳泉·校联考模拟预测)根据山西省人民政府办公厅印发的《山西省推进分布式可再生能源发展三年行动计划(20232025年)》,从2023年开始,每年选择23个左右乡镇,利用各类村闲置集体土地开发建设分散式风电帮扶小镇,新增发电装机100万千瓦左右.如图1,是某地山坡上新建的一台风力发电机,数学活动小组的同学为测量这台发电机AB的高度,如图2,在C处测得发电机底端B的仰角为15°,沿水平地面前进30m到达D处,测得发电机顶端A的仰角为53°,若AB⊥DC于点E,图中点A,B,C,D,E

(1)求斜坡BD的长;(2)求这台风力发电机AB的高度(结果取整数).(参考数据:sin53°≈0.8,cos53°【变式71】(2023秋·广西柳州·九年级统考期末)如图,某地下车库的入口处有斜坡AB,它的坡度为i=1:2,斜坡AB的长为65m,斜坡的高度为AHAH⊥

(1)求车库的高度AH;(2)求点B与点C之间的距离(结果精确到1m,参考数据:sin14°≈0.24,cos14°≈0.97【变式72】(2023·河北沧州·统考二模)某场地的跑道分为上坡、平地、下坡三种类型.一架无人机始终以每分0.2km的速度在离水平地面500m的高度匀速向右飞行,在运动员的正上方进行跟踪拍摄.如图为无人机飞行以及运动员运动路径的图像.已知OA=103km,AB=1km

(1)求坡面OA的垂直高度h;(2)求直线BC的函数解析式,并求运动员在下坡路段的速度;(3)通过计算说明运动员在O-A-【变式73】(2023·江苏泰州·统考中考真题)如图,堤坝AB长为10m,坡度i为1:0.75,底端A在地面上,堤坝与对面的山之间有一深沟,山顶D处立有高20m的铁塔CD.小明欲测量山高DE,他在A处看到铁塔顶端C刚好在视线AB上,又在坝顶B处测得塔底D的仰角α为26°35'.求堤坝高及山高DE.(sin26°35'

【题型8解直角三角形的应用之俯角仰角问题】【例8】(2023春·湖南永州·九年级校考开学考试)如图,建筑物AB后有一座小山,∠DCF=30°,测得小山坡脚C点与建筑物水平距离BC=25米,若山坡上E点处有一凉亭,且凉亭与坡脚距离CE=20米,某人从建筑物顶端A点测得E点处的俯角为48°.求建筑物AB的高(精确到0.1m).(参考数据:3≈1.7,sin48°≈0.7,cos48°≈0.6,

【变式81】(2023·河南郑州·校考三模)河南省登封市境内的嵩岳寺塔是中国现存年代最久的佛塔,堪称世界上最早的筒体建筑.某校数学社闭的同学利用所学知识来测量嵩岳寺塔的高度,如图,CD是嵩岳寺塔附近不远处的某建筑物,他们在建筑物CD底端D处利用测角仪测得嵩岳寺塔顶端B的仰角为60°,在建筑物CD顶端C处利用测角仪测得嵩岳寺塔底端A的俯角为35°,已知建筑物CD的高为15米,AB⊥AD,CD⊥AD,点A,D在同一水平线上,求嵩岳寺塔AB的高度.(结果精确到

【变式82】(2023春·山东菏泽·九年级统考期中)某校数学兴趣小组借助无人机测量一条河流的宽度CD,如图所示,一架水平飞行的无人机在A处测得正前方河流的左岸C处的俯角为α,无人机沿水平线AF方向继续飞行60米至B处,测得正前方河流右岸D处的俯角为30°.线段AM的长为无人机距地面的垂直高度,点M,C,D在同一条直线上,其中tanα=3,MC

(1)求无人机的飞行高度AM;(结果保留根号)(2)求河流的宽度CD.(结果精确到0.1米,参考数据:2≈1.41,3【变式83】(2023秋·河南新乡·九年级统考期末)二七纪念塔位于郑州市二七广场,是独特的仿古联体双塔.学完解直角三角形的知识后,某校数学社团的王华和张亮决定用自己所学到的知识测量二七纪念塔AB的高度.如图,CD是纪念塔附近不远处的某建筑物,他们在建筑物CD底端D处测得二七纪念塔顶端B的仰角为60°,在建筑物CD顶端C处测得二七纪念塔底端A的俯角为28°,已知建筑物CD的高为19米,AB⊥AD,CD⊥AD,求二七纪念塔【题型9解直角三角形的应用之方向角问题】【例9】(2023·重庆·九年级专题练习)五一节日到来,重庆又一次成为全国火热城市,小明和小亮两人相约去观赏洪崖洞夜景,小明从A地出发,小亮从B地出发,相约到C地观景.在A处测得C在A的北偏东45°方向上,在B处测得C在B的正北方向上,且B在A的北偏东75°方向上.小明小亮同时分别从A、B两地出发,他们约定先在AC上的D处汇合,小明沿着AC方向慢跑,小亮沿着北偏西60°以150m/min的速度跑了2分钟到达D(参考数据:3≈1.73,

(1)求AB的长度(结果保留根号);(2)他们在D处汇合的时间恰好为18:58,若他们汇合之后立即沿DC方向同行的速度为200m/min(汇合时间忽略不计)则他们能在19:00【变式91】(2023·江苏宿迁·统考三模)宿迁骆马湖两岸风光如画,大家都喜欢坐游船游览观光.如图,在某两段平行航道(不考虑其他因素),甲游船由西向东慢速航行,同时乙游船由东向西航行.喜爱数学的小华在甲游船到达点A处时测得C处的乙游船在甲游船的北偏东67.4°方向,向前行驶156m到点B处测得行驶到D处的乙游船在甲游船的北偏东37°方向,CD=240m,求第二次测量时甲、乙两游船之间的距离.(参考数据sin22.6°≈513,cos22.6°≈1213【变式92】(2023春·安徽合肥·九年级校考开学考试)如图,某巡逻艇在海上例行巡逻,上午10时在C处接到海上搜救中心从B处发来的救援任务,此时事故船位于B处的南偏东25°方向上的A处,巡逻艇位于B处的南偏西28°方向上1260米处,事故船位于巡逻艇的北偏东58°方向上,巡逻艇立刻前往A处救援,已知巡逻艇每分钟行驶120米,请估计几分钟可以到达事故船A处.(结果保留整数.参考数据:3≈1.73,sin53°≈45,【变式93】(2023秋·河北石家庄·九年级统考期末)期中测试临近学生都在紧张的复习中,小甘和小西相约周末去图书馆复习,如图,小甘从家A地沿着正东方向走900m到小西家B地,经测量图书馆C地在B地的北偏东15°,C地在A地的东北方向.(1)求AC的距离:(2)两人准备从B地出发,实然接到疾控中心通知,一名确诊的新冠阳性患者昨天经过了C地,并沿着C地南偏东22°走了1800m到达D地,根据相关要求,凡是确诊者途径之处800m区域以内都会划为管控区,问:小西家会被划为管控区吗?请说明理由(参考数据:3≈1.73,【题型10解直角三角形的应用之实物建模问题】【例10】(2023·河南南阳·校联考三模)如图1是某工厂生产的某种多功能儿童车,根据需要可变形为滑板车或三轮车,图2、图3是其示意图,已知前后车轮半径相同,车杆AB的长为60cm,点D是AB的中点,前支撑板DE=30cm,后支撑板EC=40cm,车杆AB与

(1)如图2,当支撑点E在水平线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论