![专题113第一章空间向量与立体几何(思维导图知识清单)-2024-2025学年高二数学举一反三(人教A版2019选择性)_第1页](http://file4.renrendoc.com/view8/M01/3F/0E/wKhkGWcaNnaAVqryAAHnZrwKsZU770.jpg)
![专题113第一章空间向量与立体几何(思维导图知识清单)-2024-2025学年高二数学举一反三(人教A版2019选择性)_第2页](http://file4.renrendoc.com/view8/M01/3F/0E/wKhkGWcaNnaAVqryAAHnZrwKsZU7702.jpg)
![专题113第一章空间向量与立体几何(思维导图知识清单)-2024-2025学年高二数学举一反三(人教A版2019选择性)_第3页](http://file4.renrendoc.com/view8/M01/3F/0E/wKhkGWcaNnaAVqryAAHnZrwKsZU7703.jpg)
![专题113第一章空间向量与立体几何(思维导图知识清单)-2024-2025学年高二数学举一反三(人教A版2019选择性)_第4页](http://file4.renrendoc.com/view8/M01/3F/0E/wKhkGWcaNnaAVqryAAHnZrwKsZU7704.jpg)
![专题113第一章空间向量与立体几何(思维导图知识清单)-2024-2025学年高二数学举一反三(人教A版2019选择性)_第5页](http://file4.renrendoc.com/view8/M01/3F/0E/wKhkGWcaNnaAVqryAAHnZrwKsZU7705.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章空间向量与立体几何(思维导图+知识清单)【人教A版(2019)】1.1空间向量及其线性运算【知识点1空间向量的概念】1.空间向量的概念(1)定义:在空间,具有大小和方向的量叫做空间向量.(2)长度或模:向量的大小.(3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作eq\o(AB,\s\up6(→)),其模记为|a|或|eq\o(AB,\s\up6(→))|.(4)几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为-a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量【注】(1)空间中点的一个平移就是一个向量;(2)数学中讨论的向量与向量的起点无关,只与大小和方向有关,只要不改变大小和方向,空间向量可在空间内任意平移,故我们称之为自由向量.【知识点2空间向量的线性运算】1.空间向量的线性运算空间向量的线性运算加法a+b=eq\o(OA,\s\up6(→))+eq\o(AB,\s\up6(→))=eq\o(OB,\s\up6(→))减法a-b=eq\o(OA,\s\up6(→))-eq\o(OC,\s\up6(→))=eq\o(CA,\s\up6(→))数乘当λ>0时,λa=λeq\o(OA,\s\up6(→))=eq\o(PQ,\s\up6(→));当λ<0时,λa=λeq\o(OA,\s\up6(→))=eq\o(MN,\s\up6(→));当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.【注】(1)空间向量的运算是平面向量运算的延展,空间向量的加法运算仍然满足平行四边形法则和三角形法则,而且满足交换律、结合律,这样就可以自由结合运算,可以将向量合并.(2)向量的减法运算是向量加法运算的逆运算,满足三角形法则.(3)空间向量加法的运算的小技巧:①首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量;②首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.【知识点3共线向量与共面向量】1.共线向量(1)空间两个向量共线的充要条件对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2)直线的方向向量在直线l上取非零向量a,我们把与向量a平行的非零向量称为直线l的方向向量.规定:零向量与任意向量平行,即对任意向量a,都有0//a.(3)共线向量定理的用途:①判定两条直线平行;②证明三点共线.【注】:证明平行时,先从两直线上取有向线段表示两个向量,然后利用向量的线性运算证明向量共线,进而可以得到线线平行,这是证明平行问题的一种重要方法;证明三点共线问题,通常不用图形,直接利用向量的线性运算即可,但一定要注意所表示的向量必须有一个公共点.2.共面向量(1)共面向量如图,如果表示向量a的有向线段eq\o(OA,\s\up6(→))所在的直线OA与直线l平行或重合,那么称向量a平行于直线l.如果直线OA平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫做共面向量.(2)向量共面的充要条件如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.(3)共面向量定理的用途:①证明四点共面;②证明线面平行.1.2空间向量的数量积运算【知识点1空间向量的数量积与夹角】1.空间向量的夹角(1)定义:已知两个非零向量a,b,在空间任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则∠AOB叫做向量a,b的夹角,记作〈a,b〉.(2)范围:0≤〈a,b〉≤π.特别地,当〈a,b〉=eq\f(π,2)时,a⊥b.2.空间向量的数量积定义已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积,记作a·b.即a·b=|a||b|cos〈a,b〉.规定:零向量与任何向量的数量积都为0.性质①a⊥b⇔a·b=0②a·a=a2=|a|2运算律①(λa)·b=λ(a·b),λ∈R.②a·b=b·a(交换律).③a·(b+c)=a·b+a·c(分配律).3.空间向量夹角的计算求两个向量的夹角:利用公式=求,进而确定.4.空间向量数量积的计算求空间向量数量积的步骤:(1)将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积.(3)代入求解.【知识点2向量的投影】1.向量的投影(1)如图(1),在空间,向量a向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b共线的向量c,c=|a|cos〈a,b〉eq\f(b,|b|),向量c称为向量a在向量b上的投影向量.类似地,可以将向量a向直线l投影(如图(2)).(2)如图(3),向量a向平面β投影,就是分别由向量a的起点A和终点B作平面β的垂线,垂足分别为A′,B′,得到eq\o(A′B′,\s\up6(→)),向量eq\o(A′B′,\s\up6(→))称为向量a在平面β上的投影向量.这时,向量a,eq\o(A′B′,\s\up6(→))的夹角就是向量a所在直线与平面β所成的角.1.3空间向量基本定理【知识点1空间向量基本定理】1.空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=xa+yb+zc.我们把{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量.2.用基底表示向量的步骤:(1)定基底:根据已知条件,确定三个不共面的向量构成空间的一个基底.(2)找目标:用确定的基底(或已知基底)表示目标向量,需要根据三角形法则及平行四边形法则,结合相等向量的代换、向量的运算进行变形、化简,最后求出结果.(3)下结论:利用空间的一个基底{,,}可以表示出空间所有向量.表示要彻底,结果中只能含有,,,不能含有其他形式的向量.【知识点2空间向量的正交分解】1.空间向量的正交分解(1)单位正交基底如果空间的一个基底中的三个基向量两两垂直,且长度都是1,那么这个基底叫做单位正交基底,常用{i,j,k}表示.(2)向量的正交分解由空间向量基本定理可知,对空间任一向量a,均可以分解为三个向量xi,yj,zk使得a=xi+yj+zk.像这样把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.【知识点3空间向量基本定理的应用】1.证明平行、共线、共面问题(1)对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2)如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.2.求夹角、证明垂直问题(1)θ为a,b的夹角,则cosθ=eq\f(a·b,|a||b|).(2)若a,b是非零向量,则a⊥b⇔a·b=0.3.求距离(长度)问题eq\b\lc\|\rc\|(\a\vs4\al\co1(a))=eq\r(a·a)(eq\b\lc\|\rc\|(\a\vs4\al\co1(\o(AB,\s\up6(→))))=eq\r(\o(AB,\s\up6(→))·\o(AB,\s\up6(→)))).4.利用空间向量基本定理解决几何问题的思路:(1)平行和点共线都可以转化为向量共线问题;点线共面可以转化为向量共面问题;(2)几何中的求夹角、证明垂直都可以转化为向量的夹角问题,解题中要注意角的范围;(3)几何中求距离(长度)都可以转化为向量的模,用向量的数量积可以求得.【注】用已知向量表示某一向量的三个关键点:(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.(3)在立体几何中三角形法则、平行四边形法则仍然成立.1.4空间向量及其运算的坐标表示【知识点1空间直角坐标系】1.空间直角坐标系(1)空间直角坐标系及相关概念①空间直角坐标系:在空间选定一点O和一个单位正交基底eq\b\lc\{\rc\}(\a\vs4\al\co1(i,j,k)),以O为原点,分别以i,j,k的方向为正方向,以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz.②相关概念:O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面、Oyz平面、Ozx平面,它们把空间分成八个部分.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.2.空间一点的坐标在空间直角坐标系Oxyz中,i,j,k为坐标向量,对空间任意一点A,对应一个向量eq\o(OA,\s\up6(→)),且点A的位置由向量eq\o(OA,\s\up6(→))唯一确定,由空间向量基本定理,存在唯一的有序实数组(x,y,z),使eq\o(OA,\s\up6(→))=xi+yj+zk.在单位正交基底{i,j,k}下与向量eq\o(OA,\s\up6(→))对应的有序实数组(x,y,z)叫做点A在此空间直角坐标系中的坐标,记作A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.【知识点2空间向量的坐标运算】1.空间向量的坐标在空间直角坐标系Oxyz中,给定向量a,作eq\o(OA,\s\up6(→))=a.由空间向量基本定理,存在唯一的有序实数组(x,y,z),使a=xi+yj+zk.有序实数组(x,y,z)叫做a在空间直角坐标系Oxyz中的坐标,上式可简记作a=(x,y,z).2.空间向量的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),有向量运算向量表示坐标表示加法a+ba+b=(a1+b1,a2+b2,a3+b3)减法a-ba-b=(a1-b1,a2-b2,a3-b3)数乘λaλa=(λa1,λa2,λa3),λ∈R数量积a·ba·b=a1b1+a2b2+a3b3【知识点3用空间向量的坐标运算解决相关的几何问题】1.空间向量的平行、垂直及模、夹角设a=(a1,a2,a3),b=(b1,b2,b3),则有当b≠0时,a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R);a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0;|a|=eq\r(a·a)=eq\r(a\o\al(2,1)+a\o\al(2,2)+a\o\al(2,3));cos〈a,b〉=eq\f(a·b,|a||b|)=eq\f(a1b1+a2b2+a3b3,\r(a\o\al(2,1)+a\o\al(2,2)+a\o\al(2,3))\r(b\o\al(2,1)+b\o\al(2,2)+b\o\al(2,3))).2.空间两点间的距离公式设P1(x1,y1,z1),P2(x2,y2,z2)是空间中任意两点,则P1P2=|eq\o(P1P2,\s\up6(→))|=eq\r(x2-x12+y2-y12+z2-z12).3.利用空间向量基本定理解决几何问题的思路:(1)平行和点共线都可以转化为向量共线问题;点线共面可以转化为向量共面问题;(2)几何中的求夹角、证明垂直都可以转化为向量的夹角问题,解题中要注意角的范围;(3)几何中求距离(长度)都可以转化为向量的模,用空间向量的坐标运算可以求得.1.5空间向量的应用(一):用空间向量研究直线、平面的位置关系【知识点1空间中点、直线和平面的向量表示】1.空间中点、直线和平面的向量表示(1)空间中点的位置向量:如图,在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量eq\o(OP,\s\up6(→))来表示.我们把向量eq\o(OP,\s\up6(→))称为点P的位置向量.(2)空间中直线的向量表示式:直线l的方向向量为a,且过点A.如图,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+ta①,把eq\o(AB,\s\up6(→))=a代入①式得eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+teq\o(AB,\s\up6(→))②,①式和②式都称为空间直线的向量表示式.(3)平面的法向量定义:直线l⊥α,取直线l的方向向量a,我们称向量a为平面α的法向量.给定一个点A和一个向量a,那么过点A,且以向量a为法向量的平面完全确定,可以表示为集合.【注】一个平面的法向量不是唯一的,在应用时,可适当取平面的一个法向量.已知一平面内两条相交直线的方向向量,可求出该平面的一个法向量.【知识点2用空间向量研究直线、平面的平行关系】1.空间中直线、平面的平行(1)线线平行的向量表示:设u1,u2分别是直线l1,l2的方向向量,则l1∥l2⇔u1∥u2⇔∃λ∈R,使得u1=λu2.(2)线面平行的向量表示:设u是直线l的方向向量,n是平面α的法向量,l⊄α,则l∥α⇔u⊥n⇔u·n=0.(3)面面平行的向量表示:设n1,n2分别是平面α,β的法向量,则α∥β⇔n1∥n2⇔∃λ∈R,使得n1=λn2.2.利用向量证明线线平行的思路:证明线线平行只需证明两条直线的方向向量共线即可.3.证明线面平行问题的方法:(1)证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内;(2)证明直线的方向向量可以用平面内两个不共线向量表示且直线不在平面内;(3)证明直线的方向向量与平面的法向量垂直且直线不在平面内.4.证明面面平行问题的方法:(1)利用空间向量证明面面平行,通常是证明两平面的法向量平行.(2)将面面平行转化为线线平行然后用向量共线进行证明.【知识点3用空间向量研究直线、平面的垂直关系】1.空间中直线、平面的垂直(1)线线垂直的向量表示:设u1,u2分别是直线l1,l2的方向向量,则l1⊥l2⇔u1⊥u2⇔u1·u2=0.(2)线面垂直的向量表示:设u是直线l的方向向量,n是平面α的法向量,l⊄α,则l⊥α⇔u∥n⇔∃λ∈R,使得u=λn.(3)面面垂直的向量表示:设n1,n2分别是平面α,β的法向量,则α⊥β⇔n1⊥n2⇔n1·n2=0.2.证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.3.用坐标法证明线面垂直的方法及步骤:(1)利用线线垂直:①将直线的方向向量用坐标表示;②找出平面内两条相交直线,并用坐标表示它们的方向向量;③判断直线的方向向量与平面内两条直线的方向向量垂直.(2)利用平面的法向量:①将直线的方向向量用坐标表示;②求出平面的法向量;③判断直线的方向向量与平面的法向量平行.4.证明面面垂直的两种方法:(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)法向量法:证明两个平面的法向量互相垂直.1.6空间向量的应用(二):用空间向量研究距离、夹角问题【知识点1用空间向量研究距离问题】1.距离问题(1)点P到直线l的距离:已知直线l的单位方向向量为u,A是直线l上的定点,P是直线l外一点,设向量eq\o(AP,\s\up6(→))在直线l上的投影向量为eq\o(AQ,\s\up6(→))=a,则点P到直线l的距离为(如图).(2)点P到平面α的距离:设平面α的法向量为n,A是平面α内的定点,P是平面α外一点,则点P到平面α的距离为eq\f(|\o(AP,\s\up6(→))·n|,|n|)(如图).2.向量法求点到直线距离的步骤:(1)根据图形求出直线的单位方向向量.(2)在直线上任取一点M(可选择特殊便于计算的点).计算点M与直线外的点N的方向向量.(3)垂线段长度.3.求点到平面的距离的常用方法(1)直接法:过P点作平面的垂线,垂足为Q,把PQ放在某个三角形中,解三角形求出PQ的长度就是点P到平面的距离.②转化法:若点P所在的直线l平行于平面,则转化为直线l上某一个点到平面的距离来求.③等体积法.④向量法:设平面的一个法向量为,A是内任意点,则点P到的距离为.【知识点2用空间向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年合伙企业策划干股加入协议书格式
- 2025年典范个人土地交易合同模板
- 2025年双方自愿离婚协议书模板(两个孩子)
- 2025年化工公司员工合同书
- 2025年企业园区租赁合同策划样本
- 2025年甲方与协作单位合同范文
- 2025年办公设备维修保养服务合同范本
- 2025年土地使用权出让合同样本
- 2025年招投标流程中合同风险防范与控制实践
- 2025年供应链协作协议样本
- 儿童常用药物及安全用药课件
- 冬季安全生产知识讲座
- 2024年媒体与传媒行业培训资料掌握新媒体技术和内容创作的最佳实践
- 护士团队的协作和领导力培养培训课件
- 安全生产法培训课件
- 人教版《道德与法治》四年级下册教材简要分析课件
- 数字示波器的工作原理及其应用
- 病史采集评分标准-纯图版
- 自行联系单位实习申请表
- 冲动式与反动式汽轮机的优劣比较
- 新起点新作为初二开学第一课主题班会
评论
0/150
提交评论