![2024届吉林省汪清六中高三下学期第十四次周考数学试题(A)试卷_第1页](http://file4.renrendoc.com/view14/M06/21/0B/wKhkGWcZuD2ACQ0IAAJ8pDeJTJU665.jpg)
![2024届吉林省汪清六中高三下学期第十四次周考数学试题(A)试卷_第2页](http://file4.renrendoc.com/view14/M06/21/0B/wKhkGWcZuD2ACQ0IAAJ8pDeJTJU6652.jpg)
![2024届吉林省汪清六中高三下学期第十四次周考数学试题(A)试卷_第3页](http://file4.renrendoc.com/view14/M06/21/0B/wKhkGWcZuD2ACQ0IAAJ8pDeJTJU6653.jpg)
![2024届吉林省汪清六中高三下学期第十四次周考数学试题(A)试卷_第4页](http://file4.renrendoc.com/view14/M06/21/0B/wKhkGWcZuD2ACQ0IAAJ8pDeJTJU6654.jpg)
![2024届吉林省汪清六中高三下学期第十四次周考数学试题(A)试卷_第5页](http://file4.renrendoc.com/view14/M06/21/0B/wKhkGWcZuD2ACQ0IAAJ8pDeJTJU6655.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省汪清六中高三下学期第十四次周考数学试题(A)试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集,集合,,则阴影部分表示的集合是()A. B. C. D.2.展开式中x2的系数为()A.-1280 B.4864 C.-4864 D.12803.已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为()A. B. C. D.4.正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为()A. B. C. D.5.已知集合,,若,则()A. B. C. D.6.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.7.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为()A.100 B.1000 C.90 D.908.已知双曲线(,)的左、右焦点分别为,以(为坐标原点)为直径的圆交双曲线于两点,若直线与圆相切,则该双曲线的离心率为()A. B. C. D.9.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为()A. B. C. D.10.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.11.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60 B.7月份的利润最大C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元12.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为()A.6里 B.12里 C.24里 D.48里二、填空题:本题共4小题,每小题5分,共20分。13.已知向量满足,且,则_________.14.已知,那么______.15.已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为________.16.曲线在点处的切线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量的平均数和众数;(2)将表示为的函数;(3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.18.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.19.(12分)在中,设、、分别为角、、的对边,记的面积为,且.(1)求角的大小;(2)若,,求的值.20.(12分)已知抛物线C:x24py(p为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.21.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.22.(10分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;(2)若曲线与直线交于两点,点的坐标为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先求出集合N的补集,再求出集合M与的交集,即为所求阴影部分表示的集合.【详解】由,,可得或,又所以.故选:D.【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.2、A【解析】
根据二项式展开式的公式得到具体为:化简求值即可.【详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为:化简得到-1280x2故得到答案为:A.【点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.3、B【解析】
先求出直线l的方程为y(x﹣c),与y=±x联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率.【详解】双曲线1(a>b>0)的渐近线方程为y=±x,∵直线l的倾斜角是渐近线OA倾斜角的2倍,∴kl,∴直线l的方程为y(x﹣c),与y=±x联立,可得y或y,∵,∴2•,∴ab,∴c=2b,∴e.故选B.【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题.4、C【解析】
如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.【详解】如图所示:在平面的投影为正方形的中心,故球心在上,,故,,设球半径为,则,解得,故.故选:.【点睛】本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.5、A【解析】
由,得,代入集合B即可得.【详解】,,,即:,故选:A【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.6、B【解析】
设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.7、A【解析】
利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为.故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.8、D【解析】
连接,可得,在中,由余弦定理得,结合双曲线的定义,即得解.【详解】连接,则,,所以,在中,,,故在中,由余弦定理可得.根据双曲线的定义,得,所以双曲线的离心率故选:D【点睛】本题考查了双曲线的性质及双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.9、C【解析】
设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为.故选:C【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.10、A【解析】
求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.11、D【解析】
直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.12、C【解析】
设第一天走里,则是以为首项,以为公比的等比数列,由题意得,求出(里,由此能求出该人第四天走的路程.【详解】设第一天走里,则是以为首项,以为公比的等比数列,由题意得:,解得(里,(里.故选:C.【点睛】本题考查等比数列的某一项的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由数量积的运算律求得,再由数量积的定义可得结论.【详解】由题意,∴,即,∴.故答案为:.【点睛】本题考查求向量的夹角,掌握数量积的定义与运算律是解题关键.14、【解析】
由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.【详解】∵,∴,,∴.故答案为:.【点睛】本小题主要考查诱导公式、同角三角函数的基本关系式,属于基础题.15、【解析】
求出椭圆与双曲线的离心率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【详解】,椭圆的方程为,的离心率为:,双曲线方程为,的离心率:,与的离心率之积为,,,的渐近线方程为:,即.故答案为:【点睛】本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题.16、【解析】
对函数求导,得出在处的一阶导数值,即得出所求切线的斜率,再运用直线的点斜式求出切线的方程.【详解】令,,所以,又,所求切线方程为,即.故答案为:.【点睛】本题考查运用函数的导函数求函数在切点处的切线方程,关键在于求出在切点处的导函数值就是切线的斜率,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),众数为150;(2);(3)【解析】
(1)由频率直方图分别求出各组距内的频率,由此能求出这个开学季内市场需求量的众数和平均数;(2)由已知条件推导出当时,,当时,,由此能将表示为的函数;(3)利用频率分布直方图能求出利润不少于4800元的概率.【详解】(1)由直方图可估计需求量的众数为150,由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:∴估计需求量的平均数为:(2)当时,当时,∴(3)由(2)知当时,当时,得∴开学季利润不少于4800元的需求量为由频率分布直方图可所求概率【点睛】本题考查频率分布直方图的应用,考查函数解析式的求法,考查概率的估计,是中档题,解题时要注意频率分布直方图的合理运用.18、(1)极坐标方程为,点的极坐标为(2)【解析】
(1)利用极坐标方程、普通方程、参数方程间的互化公式即可;(2)只需算出A、B两点的极坐标,利用计算即可.【详解】(1)曲线C:(为参数,),将代入,解得,即曲线的极坐标方程为,点的极坐标为.(2)由(1),得点的极坐标为,由直线过原点且倾斜角为,知点的极坐标为,.【点睛】本题考查极坐标方程、普通方程、参数方程间的互化以及利用极径求三角形面积,考查学生的运算能力,是一道基础题.19、(1);(2)【解析】
(1)由三角形面积公式,平面向量数量积的运算可得,结合范围,可求,进而可求的值.(2)利用同角三角函数基本关系式可求,利用两角和的正弦函数公式可求的值,由正弦定理可求得的值.【详解】解:(1)由,得,因为,所以,可得:.(2)中,,所以.所以:,由正弦定理,得,解得,【点睛】本题主要考查了三角形面积公式,平面向量数量积的运算,同角三角函数基本关系式,两角和的正弦函数公式,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.20、(1)(2)当G点横坐标为整数时,S不是整数.【解析】
(1)先求解导数,得出切线方程,联立方程得出交点G的轨迹方程;(2)先求解弦长,再分别求解点到直线的距离,表示出四边形的面积,结合点G的横坐标为整数进行判断.【详解】(1)设,则,抛物线C的方程可化为,则,所以曲线C在点A处的切线方程为,在点B处的切线方程为,因为两切线均过点G,所以,所以A,B两点均在直线上,所以直线AB的方程为,又因为直线AB过点F(0,p),所以,即G点轨迹方程为;(2)设点G(,),由(1)可知,直线AB的方程为,即,将直线AB的方程与抛物线联立,,整理得,所以,,解得,因为直线AB的斜率,所以,且,线段AB的中点为M,所以直线EM的方程为:,所以E点坐标为(0,),直线AB的方程整理得,则G到AB的距离,则E到AB的距离,所以,设,因为p是质数,且为整数,所以或,当时,,是无理数,不符题意,当时,,因为当时,,即是无理数,所以不符题意,当时,是无理数,不符题意,综上,当G点横坐标为整数时,S不是整数.【点睛】本题主要考查直线与抛物线的位置关系,抛物线中的切线问题通常借助导数来求解,四边形的面积问题一般转化为三角形的面积和问题,表示出面积的表达式是求解的关键,侧重考查数学运算的核心素养.21、(1).(2).【解析】
(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间[20,25)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率.(2)当温度大于等于25℃时,需求量为500,求出Y=900元;当温度在[20,25)℃
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Piperidine-C2-piperazine-Boc-生命科学试剂-MCE-6657
- 10-S-Hydroxy-9-R-hexahydrocannabinol-生命科学试剂-MCE-1969
- 二零二五年度店铺转租合同(含租金递增机制)
- 2025年度考研培训课程资源包及后续就业指导服务合同
- 2025年度环境保护法律事务咨询服务合同
- 2025年度非全日制用工劳动协议书解除条件
- 2025年度足浴中心员工劳动合同与顾客服务标准
- 2025年度洗浴场所员工薪酬福利保障合同
- 2025年度车库购买及车位租赁与转让合同
- 材料采购包安装合同
- 第十一章《功和机械能》达标测试卷(含答案)2024-2025学年度人教版物理八年级下册
- 2025年销售部年度工作计划
- 2024年苏州工业园区服务外包职业学院高职单招职业适应性测试历年参考题库含答案解析
- ESG表现对企业财务绩效的影响研究
- 2024年高考全国甲卷英语试卷(含答案)
- 2024年湖南高速铁路职业技术学院单招职业技能测试题库附答案
- 2024年4月浙江省00015英语二试题及答案含评分参考
- 苏教版(苏少版)九年级美术下册全册课件
- 2022年江苏省盐城市中考英语试题及参考答案
- 中国文化简介英文版(ChineseCultureintroduction)课件
- 文化差异与跨文化交际课件(完整版)
评论
0/150
提交评论