2025届天津市宝坻区等部分区高二数学第一学期期末调研模拟试题含解析_第1页
2025届天津市宝坻区等部分区高二数学第一学期期末调研模拟试题含解析_第2页
2025届天津市宝坻区等部分区高二数学第一学期期末调研模拟试题含解析_第3页
2025届天津市宝坻区等部分区高二数学第一学期期末调研模拟试题含解析_第4页
2025届天津市宝坻区等部分区高二数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届天津市宝坻区等部分区高二数学第一学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线的左、右顶点分别为、,点在双曲线上第一象限内的点,若的三个内角分别为、、且,则双曲线的渐近线方程为()A. B.C. D.2.若函数,则单调增区间为()A. B.C. D.3.用数学归纳法时,从“k到”左边需增乘的代数式是()A. B.C. D.4.已知函数的导函数的图像如图所示,则下列判断正确的是()A.在区间上,函数增函数 B.在区间上,函数是减函数C.为函数的极小值点 D.2为函数的极大值点5.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第7项为()A.95 B.131C.139 D.1416.点到直线的距离是()A. B.C. D.7.若在直线上,则直线的一个方向向量为()A. B.C. D.8.已知是等比数列,,,则()A. B.C. D.9.已知直线和互相平行,则实数的取值为()A或3 B.C. D.1或10.数列的通项公式是()A. B.C. D.11.某次射击比赛中,某选手射击一次击中10环的概率是,连续两次均击中10环的概率是,已知某次击中10环,则随后一次击中10环的概率是A. B.C. D.12.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.0二、填空题:本题共4小题,每小题5分,共20分。13.如图,正方体的棱长为1,C、D分别是两条棱的中点,A、B、M是顶点,那么点M到截面ABCD的距离是____________.14.将边长为2的正方形绕其一边所在的直线旋转一周,所得的圆柱体积为________.15.若函数在处取得极小值,则a=__________16.命题“若,则二元一次不等式表示直线的右上方区域(包含边界)”的条件:_________,结论:_____________,它是_________命题(填“真”或“假”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)四棱锥,底面为矩形,面,且,点在线段上,且面.(1)求线段的长;(2)对于(1)中的,求直线与面所成角的正弦值.18.(12分)如图,中,且,将沿中位线EF折起,使得,连结AB,AC,M为AC的中点.(1)证明:平面ABC;(2)求二面角的余弦值.19.(12分)如图,在正三棱柱中,,,,分别为,,的中点(1)证明:(2)求平面与平面所成锐二面角的余弦值20.(12分)从某居民区随机抽取2021年的10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得,,,(1)求家庭的月储蓄对月收入的线性回归方程;(2)判断变量与之间是正相关还是负相关;(3)利用(1)中的回归方程,分析2021年该地区居民月收入与月储蓄之间的变化情况,并预测当该居民区某家庭月收入为7千元,该家庭的月储蓄额.附:线性回归方程系数公式中,,,其中,为样本平均值21.(12分)如图,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中,,,(1)求证:平面ACF;(2)在线段PB上是否存在一点H,使得CH与平面ACF所成角的正弦值为?若存在,求出线段PH的长度;若不存在,请说明理由22.(10分)已知椭圆的中心在原点,焦点在轴上,长轴长为4,离心率等于(1)求椭圆的方程(2)设,若椭圆E上存在两个不同点P、Q满足,证明:直线PQ过定点,并求该定点的坐标.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设点,其中,,求得,且有,,利用两角和的正切公式可求得的值,进而可求得的值,即可得出该双曲线的渐近线的方程.【详解】易知点、,设点,其中,,且,,且,,,所以,,,因为,所以,,则,因此,该双曲线渐近线方程为.故选:B.2、C【解析】求出导函数,令解不等式即可得答案.【详解】解:因为函数,所以,令,得,所以的单调增区间为,故选:C.3、C【解析】分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式【详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C【点睛】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键4、D【解析】根据导函数与原函数的关系可求解.【详解】对于A,在区间,,故A不正确;对于B,在区间,,故B不正确;对于C、D,由图可知在区间上单调递增,在区间上单调递减,且,所以为函数的极大值点,故C不正确,D正确.故选:D5、A【解析】利用已知条件,推出数列的差数的差组成的数列是等差数列,转化求解即可【详解】由题意可知,1,5,11,21,37,61,……,的差的数列为4,6,10,16,24,……,则这个数列的差组成的数列为:2,4,6,8,……,是一个等差数列,设原数列的第7项为,则,解得,所以原数列的第7项为95,故选:A6、B【解析】直接使用点到直线距离公式代入即可.【详解】由点到直线距离公式得故选:B7、D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵在直线上,∴直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D8、D【解析】由,,可求出公比,从而可求出等比数的通项公式,则可求出,得数列是一个等比数列,然后利用等比数的求和公式可求得答案【详解】由题得.所以,所以.所以,所以数列是一个等比数列.所以=.故选:D9、B【解析】利用两直线平行的等价条件求得实数m的值.【详解】∵两条直线x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故选B【点睛】已知两直线的一般方程判定两直线平行或垂直时,记住以下结论,可避免讨论:已知,,则,10、C【解析】根据数列前几项,归纳猜想出数列的通项公式.【详解】依题意,数列的前几项为:;;;……则其通项公式.故选C.【点睛】本小题主要考查归纳推理,考查数列通项公式的猜想,属于基础题.11、B【解析】根据条件概率的计算公式,得所求概率为,故选B.12、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意建立空间直角坐标系,然后结合点面距离公式即可求得点M到截面ABCD的距离.【详解】建立如图所示的空间直角坐标系,可得A(0,0,0),B(1,1,0),D(0,,1),M(0,1,0),∴(0,1,0),(1,1,0),(0,,1),设(x,y,z)为平面ABCD的法向量,则,取y=﹣2,可得x=2,z=1,∴(2,﹣2,1),∴M到截面ABCD的距离d故答案为.【点睛】本题主要考查空间直角坐标系及其应用,点面距离的计算等知识,意在考查学生的转化能力和计算求解能力.14、【解析】依题意可得圆柱的底面半径、高,再根据圆柱的体积公式计算可得;【详解】解:依题意可得圆柱的底面半径,高,所以;故答案为:15、2【解析】对函数求导,根据极值点得到或,讨论的不同取值,利用导数的方法判定函数单调性,验证极值点,即可得解.【详解】由可得,因为函数在处取得极小值,所以,解得或,若,则,当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;所以函数在处取得极小值,符合题意;当时,,当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;所以函数在处取得极大值,不符合题意;综上:.故答案为:2.【点睛】思路点睛:已知函数极值点求参数时,一般需要先对函数求导,根据极值点求出参数,再验证所求参数是否符合题意即可.16、①.②.二元一次不等式表示直线的右上方区域(包含边界)③.真【解析】由二元一次不等式的意义可解答问题.【详解】因为,二元一次不等式所表示的区域如下图所示:所以在的条件下,二元一次不等式表示直线的右上方区域(包含边界),此命题是真命题.故答案为:;二元一次不等式表示直线的右上方区域(包含边界);真三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解析】(1)根据线面垂直得到,再由相似比得方程可求解;(2)建立空间直角坐标系,求平面的法向量,运用夹角公式先求线面角的余弦值,再转化为正弦值即可.小问1详解】面,在矩形中,易得:;【小问2详解】如四建立空间直角坐标系:则,,由题意可知:为平面的一个法向量,,,直线与面所成角的正弦值为.18、(1)证明见解析(2)【解析】(1)由勾股定理以及等腰三角形的性质得出,,再由线面垂直的判定证明即可;(2)以点为坐标原点,建立空间直角坐标系,由向量法得出面面角.【小问1详解】设,则,,平面平面,连接,,,,,即又,平面ABC【小问2详解】,以点为坐标原点,建立如下图所示的空间直角坐标系设平面的法向量为,平面的法向量为,令,则同理可得,又二面角为钝角,故二面角的余弦值为.19、(1)证明见解析(2)【解析】(1)由已知,以为坐标原点,建立空间直角坐标系,分别表示出B、D、E、F点的坐标,然后通过计算向量数量积来进行证明;(2)由第(1)建立的空间直角坐标系,分别表示出对应点的坐标,然后计算平面与平面的法向量,然后通过法向量去计算两平面所成的锐二面角即可.【小问1详解】如图,以为坐标原点,以,的方向分别为,轴的正方向建立如图所示的空间直角坐标系,由,,,分别为,,的中点,则,,证明:因为,,所以,所以【小问2详解】设平面的法向量为,因为,,所以,令,得设平面的法向量为,则令,得因为所以平面与平面所成锐二面角的余弦值为20、(1)=0.3x-0.4(2)正相关(3)1.7千元【解析】(1)由题意得到n=10,求得,进而求得,写出回归方程;.(2)由判断;(3)将x=7代入回归方程求解.【小问1详解】由题意知n=10,,则,所以所求回归方程为=0.3x-0.4.【小问2详解】因为,所以变量y的值随x的值增加而增加,故x与y之间是正相关.【小问3详解】将x=7代入回归方程可以预测该家庭的月储蓄为=0.3×7-0.4=1.7(千元).21、(1)证明见解析(2)存在,的长为或,理由见解析.【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)设,求出,根据与平面所成角的正弦值列方程,由此求得,进而求得的长.小问1详解】依题意,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中,,,,以为空间坐标原点建立如图所示空间直角坐标系,,,设平面法向量为,则,故可设,由于,所以平面.【小问2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论