版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省长春市六中数学高二上期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线y2=4x的焦点坐标是A.(0,2) B.(0,1)C.(2,0) D.(1,0)2.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.3.点是正方体的底面内(包括边界)的动点.给出下列三个结论:①满足的点有且只有个;②满足的点有且只有个;③满足平面的点的轨迹是线段.则上述结论正确的个数是()A. B.C. D.4.函数在和处的导数的大小关系是()A. B.C. D.不能确定5.如果,那么下列不等式成立的是()A. B.C. D.6.在直三棱柱中,侧面是边长为的正方形,,,且,则异面直线与所成的角为()A. B.C. D.7.函数的导函数为()A. B.C. D.8.已知等比数列的前项和为,则关于的方程的解的个数为()A.0 B.1C.无数个 D.0或无数个9.如果,,…,是抛物线C:上的点,它们的横坐标依次为,,…,,点F是抛物线C的焦点.若=10,=10+n,则p等于()A.2 B.C. D.410.等比数列中,,则()A. B.C.2 D.411.已知圆,圆,则两圆的公切线的条数为()A.1 B.2C.3 D.412.已知{}为等比数列.,则=()A.—4 B.4C.—4或4 D.16二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前n项和为,,,则______14.定义方程的实数根叫做函数的“新驻点”.(1)设,则在上的“新驻点”为___________;(2)如果函数与的“新驻点”分别为、,那么和的大小关系是___________.15.三棱锥中,、、两两垂直,且.给出下列四个命题:①;②;③和的夹角为;④三棱锥的体积为.其中所有正确命题的序号为______________.16.在空间直角坐标系Oxyz中,点在x,y,z轴上的射影分别为A,B,C,则四面体PABC的体积为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列的前n项和,且,(1)求数列的通项公式;(2)令,求数列的前n项和18.(12分)已知椭圆长轴长为4,A,B分别为左、右顶点,P为椭圆上不同于A,B的动点,且点在椭圆上,其中e为椭圆的离心率(1)求椭圆的标准方程;(2)直线AP与直线(m为常数)交于点Q,①当时,设直线OQ的斜率为,直线BP的斜率为.求证:为定值;②过Q与PB垂直的直线l是否过定点?如果是,请求出定点坐标;如果不是,请说明理由19.(12分)设:实数满足,:实数满足.(1)若,且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.20.(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为假命题,为真命题,求实数的取值范围.21.(12分)△ABC的三个顶点分别为(1)求△ABC的外接圆M的方程;(2)设直线与圆M交于两点,求|PQ|的值22.(10分)已知抛物线的顶点是坐标原点,焦点在轴的正半轴上,是抛物线上的点,点到焦点的距离为1,且到轴的距离是(1)求抛物线的标准方程;(2)假设直线通过点,与抛物线相交于,两点,且,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】的焦点坐标为,故选D.【考点】抛物线的性质【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单几何性质是我们要重点掌握的内容,一定要熟记掌握2、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.3、C【解析】对于①,根据线线平行的性质可知点即为点,因此可判断①正确;对于②,根据线面垂直的判定可知平面,,由此可判定的位置,进而判定②的正误;对于③,根据面面平行可判定平面平面,因此可判断此时一定落在上,由此可判断③的正误.【详解】如图:对于①,在正方体中,,若异于,则过点至少有两条直线和平行,这是不可能的,因此底面内(包括边界)满足的点有且只有个,即为点,故①正确;对于②,正方体中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直线一定落在平面内,由是平面上的动点可知,一定落在上,这样的点有无数多个,故②错误;对于③,,平面,则平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的动点可知,此时一定落在上,即点的轨迹是线段,故③正确,故选:C.4、A【解析】求出函数导数即可比较.【详解】,,所以,即.故选:A.5、D【解析】利用不等式的性质分析判断每个选项.【详解】由不等式的性质可知,因为,所以,,故A错误,D正确;由,可得,,故B,C错误.故选:D6、C【解析】分析得出,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成的角.【详解】由题意可知,,因为,,则,,因为平面,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则点、、、,,,,因此,异面直线与所成的角为.故选:C.7、B【解析】利用复合函数求导法则即可求导.【详解】,故选:B.8、D【解析】利用等比数列的求和公式讨论公比的取值即得.【详解】设等比数列的公比为,当时,,因为,所以无解,即方程的解的个数为0,当时,,所以时,方程有无数个偶数解,当时,方程无解,综上,关于的方程的解的个数为0或无数个.故选:D.9、A【解析】根据抛物线定义得个等式,相加后,利用已知条件可得结果.【详解】抛物线C:的准线为,根据抛物线的定义可知,,,,,所以,所以,所以,所以.故选:A【点睛】关键点点睛:利用抛物线的定义解题是解题关键,属于基础题.10、D【解析】利用等比数列的下标特点,即可得到结果.【详解】∵,∴,∴,∴.故选:D11、B【解析】根据圆的方程,求得圆心距和两圆的半径之和,之差,判断两圆的位置关系求解.【详解】因为圆,圆,所以,,所以,所以两圆相交,所以两圆的公切线的条数为2,故选:B12、B【解析】根据题意先求出公比,进而用等比数列通项公式求得答案.【详解】由题意,设公比为q,则,则.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】由已知及等差数列通项公式、前n项和公式,列方程求基本量即可.【详解】若公差为,则,可得.故答案为:.14、①.②.【解析】(1)根据“新驻点”的定义求得,结合可得出结果;(2)求出的值,利用零点存在定理判断所在的区间,进而可得出与的大小关系.详解】(1),,根据“新驻点”的定义得,即,可得,,解得,所以,函数在上的“新驻点”为;(2),则,根据“新驻点”的定义得,即.,则,由“新驻点”的定义得,即,构造函数,则函数在定义域上为增函数,,,,由零点存在定理可知,,.故答案为:(1);(2).【点睛】本题考查导数的计算,是新定义的题型,关键是理解“新驻点”的定义.15、①②③【解析】设,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量数量积的坐标运算可判断①②③④的正误.【详解】设,由于、、两两垂直,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,如下图所示:则、、、.对于①,,所以,,①正确;对于②,,,则,②正确;对于③,,,,,所以,和的夹角为,③正确;对于④,,,,则,所以,,而三棱锥的体积为,④错误.故答案为:①②③.【点睛】关键点点睛:在立体几何中计算空间向量的相关问题,可以选择合适的点与直线建立空间直角坐标系,利用空间向量的坐标运算即可.16、2【解析】将物体放入长方体中,切割处理求得体积.【详解】如图所示:四面体PABC可以看成以1,2,3为棱长的长方体切去四个全等的三棱锥,所以四面体PABC的体积为.故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设等差数列的首项、公差,由列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由(1)可知,利用裂项相消法可求数列的前n项和.小问1详解】依题意:设等差数列的首项为,公差为,则解得所以数列的通项公式为【小问2详解】由(1)可知因为,所以,所以.18、(1)(2)①证明见解析;②直线过定点;【解析】(1)依题意得到方程组,解得,即可求出椭圆方程;(2)①由(1)可得,,设,,表示出直线的方程,即可求出点坐标,从而得到、,即可求出;②在直线方程中令,即可得到的坐标,再求出直线的斜率,即可得到直线的方程,从而求出定点坐标;【小问1详解】解:依题意可得,即,解得或(舍去),所以,所以椭圆方程为【小问2详解】解:①由(1)可得,,设,,则直线的方程为,令则,所以,,所以,又点在椭圆上,所以,即,所以,即为定值;②因为直线的方程为,令则,因为,所以,所以直线的方程为,即又,所以,令,解得,所以直线过定点;19、(1)(2)【解析】(1)首先分别求出、为真时参数的取值范围,再由为真,取并集即可;(2)首先解一元二次不等式,依题意是的必要不充分条件,则可推出,而不能推出,即可得到不等式组,解得即可;【小问1详解】解:当时,,即,解得,即为真时,实数的取值范围为实数满足,即,解得:,即为真时,实数的取值范围为因,所以,即;【小问2详解】解:由,即,所以,因为是的充分不必要条件,所以是的必要不充分条件,则可推出,而不能推出,则,解得;20、(1);(2).【解析】解不等式求得为真、为真分别对应的解集;(1)由为真可得全真,两解集取交集可得结果;(2)由和的真假性可得一真一假,则分为真假和假真两种情况求得解集.【小问1详解】若为真,则,即,即,所以或,若为真,则,所以,因为为真命题,所以均为真命题.所以实数的取值范围是.【小问2详解】若为假命题,为真命题,则一真一假,若真假,则,解得或,若假真,则,解得,综上所述,实数的取值范围是.21、(1);(2).【解析】(1)设出圆的一般方程,根据的坐标满足圆方程,待定系数,即可求得圆方程;(2)根据(1)中所求圆方程,结合弦长公式,即可求得结果.【小问1详解】设圆M的方程为,因为都在圆上,则,解得,故圆M的方程为,也即.【小问2详解】由(1)可知,圆M的圆心坐标为,半径为,点M到直线的距离故.22、(1);(2)【解析】(1)根据抛物线的定义,结合到焦点、轴的距离求,写出抛物线方程.(2)直线的斜率不存在易得与不垂直与题设矛盾,设直线方程联立抛物线方程,应用韦达定理求,,进而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《静脉输液治疗规范》课件
- 2023年辽宁省盘锦市公开招聘警务辅助人员(辅警)笔试冲刺自测题二卷含答案
- 2023年湖南省娄底市公开招聘警务辅助人员(辅警)笔试摸底备战测试(3)卷含答案
- 2022年黑龙江省大兴安岭地区公开招聘警务辅助人员(辅警)笔试自考练习卷一含答案
- 《服装类别与要求》课件
- 《汽车营销技术》课件第11章
- 《神经网络》课件第11章
- 《机械制造技术实验教程》课件实验1~实验8
- ABB工业机器人应用技术 课件 2.6系统输入输出与IO信号的关联
- 2024年售后服务与销售协议2篇
- 河北事业单位改革方案
- 《法理学》(第三版教材)形成性考核作业1234答案
- 二次放行课件(签派)
- 《人际关系与沟通技巧》(第3版)-教学大纲
- 医疗机构医疗设备、医用耗材管理质量控制考核评价准则
- 数显千分尺作业指导书
- 中国共产主义青年团团员发展过程纪实簿
- 传热学(哈尔滨工程大学)智慧树知到课后章节答案2023年下哈尔滨工程大学
- 2014光伏发电站功率控制能力检测技术规程
- 第15课 有创意的书(说课稿)2022-2023学年美术四年级上册 人教版
- 2023年上海交通大学827材料科学基础试题
评论
0/150
提交评论