重庆市第一中学2025届数学高一上期末统考模拟试题含解析_第1页
重庆市第一中学2025届数学高一上期末统考模拟试题含解析_第2页
重庆市第一中学2025届数学高一上期末统考模拟试题含解析_第3页
重庆市第一中学2025届数学高一上期末统考模拟试题含解析_第4页
重庆市第一中学2025届数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市第一中学2025届数学高一上期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)的表达式是A. B.C. D.2.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.3.已知向量,,则向量与的夹角为()A. B.C. D.4.下列说法正确的是()A.向量与共线,与共线,则与也共线B.任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行5.函数的零点为,,则的值为()A.1 B.2C.3 D.46.表示不超过x的最大整数,例如,,,.若是函数的零点,则()A.1 B.2C.3 D.47.对空间中两条不相交的直线和,必定存在平面,使得()A. B.C. D.8.已知弧长为cm的弧所对的圆心角为,则这条弧所在的扇形面积为()cm2A. B.C. D.9.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}10.设,为正数,且,则的最小值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若幂函数在区间上是减函数,则整数________12.已知=-5,那么tanα=________.13.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________14.在△ABC中,点满足,过点的直线与,所在直线分别交于点,,若,,,则的最小值为___________.15.当时,函数取得最大值,则___________.16.已知奇函数在上是增函数,若,,,则,,的大小关系为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围18.已知集合,,.若,求实数a的取值范围.19.如图,ABCD是一块边长为100米的正方形地皮,其中ATS是一座半径为90米的扇形小山,P是弧TS上一点,其余部分都是平地.现有一开发商想在平地上建造一个两边分别落在BC与CD上的长方形停车场PQCR,求长方形停车场PQCR面积的最大值.20.计算下列各式的值:(1)lg2(2)sin21.某中学有初中学生1800人,高中学生1200人,为了解全校学生本学期开学以来(60天)的课外阅读时间,学校采用分层抽样方法,从中抽取100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”按学生的课外阅读时间(单位:时)各分为5组[0,10)、[10,20)、[20,30)、[30,40)、[40,50],得到频率分布直方图如图所示.(1)估计全校学生中课外阅读时间在[30,40)小时内的总人数是多少;(2)从课外阅读时间不足10小时的样本学生中随机抽取3人,求至少有2个初中生的概率;(3)国家规定,初中学生平均每人每天课外阅读时间不少于半个小时.若该校初中学生课外阅读时间小于国家标准,则学校应适当增加课外阅读时间,根据以上抽样调查数据,该校是否需要增加初中学生的课外阅读时间?并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题意得,当时,则,当时,,所以,又因为函数是定义在上的奇函数,所以,故选A考点:函数的奇偶性的应用;函数的表达式2、C【解析】根据三角函数的周期变换和平移变换的原理即可得解.【详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.3、C【解析】结合平面向量线性运算的坐标表示求出,然后代入模长公式分别求出和,进而根据平面向量的夹角公式即可求出夹角的余弦值,进而求出结果.【详解】,,,,从而,且,记与的夹角为,则又,,故选:4、C【解析】根据共线向量(即平行向量)定义即可求解.【详解】解:对于A:可能是零向量,故选项A错误;对于B:两个向量可能在同一条直线上,故选项B错误;对于C:因为与任何向量都是共线向量,所以选项C正确;对于D:平行向量可能在同一条直线上,故选项D错误故选:C.5、C【解析】根据零点存在性定理即可求解.【详解】是上的增函数,又,函数的零点所在区间为,又,.故选:C.6、B【解析】利用零点存在性定理判断的范围,从而求得.【详解】在上递增,,所以,所以.故选:B7、C【解析】讨论两种情况,利用排除法可得结果.【详解】和是异面直线时,选项A、B不成立,排除A、B;和平行时,选项D不成立,排除D,故选C.【点睛】本题主要考查空间线面关系的判断,考查了空间想象能力以及排除法的应用,属于基础题.8、C【解析】根据弧长计算出半径,再利用面积公式得到答案.【详解】弧长为cm的弧所对的圆心角为,则故选【点睛】本题考查了扇形面积,求出半径是解题的关键.9、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B10、B【解析】将拼凑为,利用“1”的妙用及其基本不等式求解即可.【详解】∵,∴,即,∴,当且仅当,且时,即,时等号成立故选:.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】由题意可得,求出的取值范围,从而可出整数的值【详解】因为幂函数在区间上是减函数,所以,解得,因为,所以,故答案为:212、-【解析】由已知得=-5,化简即得解.【详解】易知cosα≠0,由=-5,得=-5,解得tanα=-.故答案为:-【点睛】本题主要考查同角的商数关系,意在考查学生对这些知识的理解掌握水平.13、3【解析】设铜球的半径为,则,得,故答案为.14、3【解析】先利用条件找到,然后对减元,化为,利用基本不等式求最小值.【详解】,,,三点共线,.则当且仅当,即时等号成立.故答案为:3.【点睛】(1)在向量运算中:①构造向量加、减法的三角形法则和平行四边形法则;②树立“基底”意识,利用基向量进行线性运算;(2)基本不等式求最值要注意应用条件:“一正二定三相等”.15、##【解析】由辅助角公式,正弦函数的性质求出,,再根据两角和的正切和公式,诱导公式求.【详解】(其中,),当时,函数取得最大值∴,,即,,所以,.故答案为:.16、【解析】根据奇函数的性质得,再根据对数函数性质得,进而结合函数单调性比较大小即可.【详解】解:因为函数为奇函数,所以,由于函数在单调递增,所以,由于,所以因为函数在上是增函数,所以,即故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时,,所以,即函数的图象过对称中心(i)当,即时,函数在上单调递增,由对称性知,在上单调递增,从而在上单调递增,由对称性得,则要使,只需,解得,所以,(ii)当,即时,函数在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减所以函数在上单调递减,在上单调递增,在上单调递减,,其中,要使,只需,解得,(iii)当,即时,函数在上单调递减,由对称性知,在上单调递减,从而在上单调递减.此时要使,只需,解得,综上可知,实数的取值范围是18、【解析】求函数定义域得,解不等式得,进而得,再结合题意,分和两种情况求解即可.【详解】解:由,解得,所以,因为,解得,所以所以因为,所以,当时,,解得时,可得,解得:综上可得:实数a的取值范围是19、14050−9000(m2)【解析】设,然后表示出,进而表示出矩形PQCR的面积,再根据三角函数的相关知识化简求值,解决问题.详解】解:如图,连接AP,设,延长RP交AB于M,则,,∴,.∴矩形PQCR的面积为设,则,∴,∴当时,.,故长方形停车场PQCR面积的最大值是.20、(1)1(2)-1【解析】(1)利用对数的运算性质直接计算可得;(2)先进行切化弦,再通分后利用和差角公式和诱导公式即可求得.【小问1详解】原式=lg2(lg2+lg5)+lg5=lg2+lg5=1【小问2详解】原式=sin40°(sin10°cos=sin40°(sin10=2=-2=-=-=-121、(1)720人(2)(3)需要增加,理由见解析【解析】(1)由分层抽样的特点可分别求得抽取的初中生、高中生人数,由频率分布直方图的性质可知初中生、高中生课外阅读时间在,小时内的频率,然后由频数样本容量频率可分别得初中生、高中生课外阅读时间在,小时内的样本学生数,最后将两者相加即可(2)记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,由频数样本容量频率组距频率可分别得初中生、高中生中,阅读时间不足10个小时的学生人数,然后用列举法表示出随机抽取3人的所有可能结果以及事件的结果,从而得(3)同一组中的数据用该组区间中点值作为代表来计算样本中的所有初中生平均每天阅读时间,并与30小时比较大小,若小于30小时,则需要增加,否则不需要增加【小问1详解】由分层抽样知,抽取的初中生有人,高中生有人初中生中,课外阅读时间在,小时内的频率为:,学生人数为人高中生中,课外阅读时间在,小时内的频率为:,学生人数约有人,全校学生中课外阅读时间在,小时内学生总人数为人【小问2详解】记“从阅读时间不足10个小时的样本学生中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论