




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题12.5全等三角形中辅助线的添法(三大模型)【模型一:倍长中线模型】1.(23-24八年级上·江苏·期末)如图,在△ABC中.AD是BC边上的中线,交BC于点D.(1)如下图,延长AD到点E,使DE=AD,连接BE.求证:△ACD≌△EBD.(2)如下图,若∠BAC=90°,试探究AD与BC有何数量关系,并说明理由.(3)如下图,若CE是边AB上的中线,且CE交AD于点O.请你猜想线段AO与OD之间的数量关系,并说明理由.
2.(23-24八年级上·广西北海·期末)八年级数学课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=9,AC=5,求BC边上的中线AD的取值范围.小红在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小红的方法思考作答:(1)由已知和作图能得到△ADC≌△EDB的理由是______;A.SSS
B.SAS
C.AAS
D.HL(2)求得AD的取值范围是______;A.5<AD<9
B.5≤AD≤9
C.2<AD<7
D.2≤AD≤7(3)归纳总结:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小红善于探究,她又提出了如下的问题,请你解答.如图2,在△ABC中,点E在BC上,且DE=DC,过E作EF∥AB,且EF=AC.求证:AD平分∠BAC3.(23-24八年级上·安徽安庆·期末)(1)如图①,在△ABC中,若AB=6,AC=4,AD为BC边上的中线,求AD的取值范围;(2)如图②,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,4.(23-24八年级上·江苏南通·期中)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=6,AC=4,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图1所示,延长AD到点E,使DE=AD,连接BE.请根据小明的思路继续思考:(1)由已知和作图能证得△ADC≌△EDB,得到BE=AC,在△ABE中求得2AD的取值范围,从而求得AD的取值范围是______________.方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系;(2)如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE+∠CAF=180°,试判断线段AD与EF的数量关系,并加以证明;(3)如图3,在△ABC中,D,E是BC的三等分点.求证:AB+AC>AD+AE.5.(23-24七年级下·广东佛山·期中)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD到点E,使DE=AD请根据小明的方法思考:
(1)求得AD的取值范围是___________;【问题解决】请利用上述方法(倍长中线)解决下列三个问题如图,已知∠BAC+∠CDE=180°,AB=AC,DC=DE,P为BE的中点.
(2)如图1,若A,C,D共线,求证:AP平分∠BAC;(3)如图2,若A,C,D不共线,求证:AP⊥DP;(4)如图3,若点C在BE上,记锐角∠BAC=x,且AB=AC=CD=DE,则∠PDC的度数是___________(用含x的代数式表示).【模型二:旋转模型(截长补短)】6.(23-24八年级上·湖北武汉·期末)如图,在五边形ABCDE中,∠B=∠E=90°,∠CAD=12∠BAE,AB=AE,且CD=3,AE=4,则五边形ABCDEA.6 B.8 C.10 D.127.(23-24八年级上·上海·期中)如图所示,已知AC平分∠BAD,∠B+∠D=180°,CE⊥AB于点E,判断AB、AD与BE之间有怎样的等量关系,并证明.8.(23-24八年级上·山东临沂·期中)【基本模型】(1)如图1,ABCD是正方形,∠EAF=45°,当E在BC边上,F在CD边上时,请你探究BE、DF与EF之间的数量关系,并证明你的结论.【模型运用】(2)如图2,ABCD是正方形,∠EAF=45°,当E在BC的延长线上,F在CD的延长线上时,请你探究BE、DF与EF之间的数量关系,并证明你的结论.9.(23-24八年级上·湖北武汉·周测)(1)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD(2)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=110.(23-24八年级上·贵州黔东南·期末)【初步探索】(1)如图1,在四边形ABCD中,AB=AD,∠B=∠ADC=90°,∠BAD=120°,E、F分别是BC、CD上的点,且∠EAF=60°,探究图中BE、EF、FD之间的数量关系.小芮同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明:△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=∠180°,∠BAD=120°,E、F分别是BC、CD上的点,且∠EAF=60°,(1)中的结论是否仍然成立,说明理由.【拓展延伸】(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请判断∠EAF与∠DAB的数量关系.并证明你的结论.【模型三:“K子”型(一线三垂直)】11.(23-24八年级上·广东江门·阶段练习)已知,△ABC中,∠BAC=90°,AB=AC,直线m过点A,且BD⊥m于D,CE⊥m于E,当直线m绕点A旋转至图1位置时,我们可以发现DE=BD+CE.(1)当直线m绕点A旋转至图2位置时,问:BD与DE、CE的关系如何?请予证明;(2)直线m在绕点A旋转一周的过程中,BD、DE、CE存在哪几种不同的数量关系?(直接写出,不必证明)12.(23-24八年级上·贵州铜仁·阶段练习)(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE,BD,CE三条线段的数量关系,并说明理由.13.(23-24八年级上·山西大同·阶段练习)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.(1)如图1.已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小明对图2进行了探究,若∠BAC=90°,AB=AC,直线l经过点A.BD⊥直线l,CE⊥直线l,垂足分别为点D、E.他发现线段DE、BD、CE之间也存在着一定的数量关系,请你直接写出段DE、BD、CE之间的数量关系,(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG(正方形的4条边都相等,4个角都是直角),AH是BC边上的高,延长HA交EG于点I,若BH=3,CH=7,求AI的长.14.(23-24八年级上·河北石家庄·阶段练习)通过对如图数学模型的研究学习,解决下列问题:
(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=________,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(3)如图3,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,S115.(23-24七年级下·广东深圳·期末)【材料阅读】小明在学习完全等三角形后,为了进一步探究,他尝试用三种不同方式摆放一副三角板(在△ABC中,∠ABC=90°,AB=CB;△DEF中,∠DEF=90°,∠EDF=30°),并提出了相应的问题.【发现】(1)如图1,将两个三角板互不重叠地摆放在一起,当顶点B摆放在线段DF上时,过点A作AM⊥DF,垂足为点M,过点C作CN⊥DF,垂足为点N,①请在图1找出一对全等三角形,在横线上填出推理所得结论;∵∠ABC=90°,∴∠ABM+∠CBN=90°,∵AM⊥DF,CN⊥DF,∴∠AMB=90°,∠CNB=90°,∴∠ABM+∠BAM=90∴∠BAM=∠CBN,∵∠BAM=∠CBN∠AMB=∠CNB=AB=BC,__________;②AM=2,CN=7,则MN=__________;【类比】(2)如图2,将两个三角板叠放在一起,当顶点B在线段DE上且顶点A在线段EF上时,过点C作CP⊥DE,垂足为点P,猜想AE,PE,CP的数量关系,并说明理由;【拓展】(3)如图3,将两个三角板叠放在一起,当顶点A在线段DE上且顶点B在线段EF上时,若AE=5,BE=1,连接CE,则△ACE的面积为__________.专题12.5全等三角形中辅助线的添法(三大模型)【模型一:倍长中线模型】1.(23-24八年级上·江苏·期末)如图,在△ABC中.AD是BC边上的中线,交BC于点D.(1)如下图,延长AD到点E,使DE=AD,连接BE.求证:△ACD≌△EBD.(2)如下图,若∠BAC=90°,试探究AD与BC有何数量关系,并说明理由.(3)如下图,若CE是边AB上的中线,且CE交AD于点O.请你猜想线段AO与OD之间的数量关系,并说明理由.【思路点拨】(1)利用SAS可得△ACD≌△EBD;(2)延长AD到点E,使DE=AD,连接BE,先根据△ACD≌△EBD证得∠C=∠CBE,AC=BE,进而得到AC∥EB,AD=1(3)延长OE到点M,使EM=OE,连接AM.延长OD到点N,使DN=OD,连接BM,BN,BO,证得△MOB≌△NBOASA可得MB=NO,进而得到AO=2OD本题考查了全等三角形的判定与性质,三角形的中线,熟练掌握全等三角形的判定方法是解题的关键.【解题过程】(1)证明:在△ACD和△EBD中,DA=DE∴△ACD≌△EBDSAS(2)解:AD=1延长AD到点E,使DE=AD,连接BE,如图由(1)得△ACD≌△EBD,∴∠C=∠CBE,AC=BE∴AC∥EB,∴∠BAC+∠ABE=180°,∵∠BAC=90°,∴∠ABE=90°,∴∠BAC=∠ABE在△ABC和△BAE中AC=BE∴△ABC≌△BAE∴BC=AE,∴AD=1(3)AO=2OD,理由如下:延长OE到点M,使EM=OE,连接AM.延长OD到点N,使DN=OD,连接BM,BN,BO,如图,由(1)得△AOE≌△BME,△ODC≌△NDB,∴∠AOE=∠BME,∠OCD=∠NBD,AO=BM,∴AO∥BM,∴∠MBO=∠BON,∠MOB=∠NBO在△MOB和△NBO中,∠MBO=∠BONOB=OB∴△MOB≌△NBO∴MB=NO,∴AO=2OD.2.(23-24八年级上·广西北海·期末)八年级数学课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=9,AC=5,求BC边上的中线AD的取值范围.小红在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小红的方法思考作答:(1)由已知和作图能得到△ADC≌△EDB的理由是______;A.SSS
B.SAS
C.AAS
D.HL(2)求得AD的取值范围是______;A.5<AD<9
B.5≤AD≤9
C.2<AD<7
D.2≤AD≤7(3)归纳总结:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小红善于探究,她又提出了如下的问题,请你解答.如图2,在△ABC中,点E在BC上,且DE=DC,过E作EF∥AB,且EF=AC.求证:AD平分∠BAC【思路点拨】本题是三角形综合题,考查了倍长中线法解题,全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握倍长中线法,灵活进行三角形全等的证明,是解题的关键.(1)根据三角形全等的判定定理去选择即可;(2)根据三角形全等的性质和三角形三边关系定理计算即可;(3)由“SAS”可证△EFD≌△CMD,可得EF=DM,∠EFD=∠M,由平行线的性质和等腰三角形的性质可证∠M=∠BAD=∠CAM,可得AD平分∠BAC.【解题过程】(1)解:延长AD到点E,使DE=AD,∵BD=CD,在△ADC和△EDB中,CD=BD∠ADC=∠BDE∴△ADC≌△EDB(SAS故选:B.(2)解:∵△ADC≌△EDB,∴AC=EB,∵AB=9,AC=5,AB−BE<AE<AB+BE,∴4<2AD<14,∴2<AD<7,故选:C;(3)证明:如图,延长AD至M,使DM=DF,连接CM,∵DE=DC,∠EDF=∠CDM,DF=DM,∴△EFD≌△CMD(SAS∴EF=DM,∠EFD=∠M,∴EF∥CM,∵EF∥AB,∴CM∥AB,∴∠BAD=∠M,∵EF=AC,∴EF=DM=AC,∴∠CAM=∠M,∴∠BAD=∠CAM,∴AD平分∠BAC.3.(23-24八年级上·安徽安庆·期末)(1)如图①,在△ABC中,若AB=6,AC=4,AD为BC边上的中线,求AD的取值范围;(2)如图②,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,【思路点拨】(1)由已知得出AB−BE<AE<AB+BE,即6−4<AE<6+4,AD为(2)延长FD至点M,使DM=DF,连接BM,EM,可得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出(3)延长AE,DF交于点G,根据平行和角平分线可证AF=FG,也可证得△ABE≌△GCE,从而可得【解题过程】解:(1)如图①,延长AD到点E,使DE=AD,连接BE,∵D是BC的中点,∴BD=CD,∵∠ADC=∠BDE,∴△ACD≌△EBDSAS∴BE=AC=4,在△ABE中,AB−BE<AE<AB+BE,∴6−4<AE<6+4,∴2<AE<10,∴1<AD<5,故答案为:1<AD<5;(2)BE+CF>EF,理由如下:延长FD至点M,使DM=DF,连接BM、EM,如图②所示.同(1)得:△BMD≌△CFDSAS∴BM=CF,∵DE⊥DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)AF+CF=AB,理由如下:如图③,延长AE,DF交于点∵AB∥CD,∴∠BAG=∠G,在△ABE和△GCE中,CE=BE,∴△ABE≌△GECAAS∴CG=AB,∵AE是∠BAF的平分线,∴∠BAG=∠GAF∴∠FAG=∠G,∴AF=GF,∵FG+CF=CG,∴AF+CF=AB.4.(23-24八年级上·江苏南通·期中)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=6,AC=4,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图1所示,延长AD到点E,使DE=AD,连接BE.请根据小明的思路继续思考:(1)由已知和作图能证得△ADC≌△EDB,得到BE=AC,在△ABE中求得2AD的取值范围,从而求得AD的取值范围是______________.方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系;(2)如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE+∠CAF=180°,试判断线段AD与EF的数量关系,并加以证明;(3)如图3,在△ABC中,D,E是BC的三等分点.求证:AB+AC>AD+AE.【思路点拨】本题考查了三角形三边关系,三角形全等的性质与判定,利用倍长中线辅助线方法是解题的关键.(1)延长AD到点E,使DE=AD,连接BE,根据题意证明△MDB≌△ADC,可知BM=AC,在△ABM中,根据AB−BM<AM<AB+BM,即可;(2)延长AD到M,使得DM=AD,连接BM,由(1)的结论以及已知条件证明△ABM≌△EAF,进而可得AM=2AD,由AM=EF,即可求得AD与EF的数量关系;(3),取DE中点H,连接AH并延长至Q点,使得AH=QH,连接QE和QC,通过“倍长中线”思想全等证明,进而得到AB=CQ,AD=EQ,然后结合三角形的三边关系建立不等式证明即可得出结论.【解题过程】(1)解:如图1所示,延长AD到点E,使DE=AD,连接BE.∵AD是△ABC的中线,∴BD=CD,在△MDB和△ADC中,BD=CD∠BDM=∠CDA∴△MDB≌△ADC(SAS∴BM=AC=4,在△ABM中,AB−BM<AM<AB+BM,∴6−4<AM<6+4,即2<AM<10,∴1<AD<5,故答案为:1<AD<5.(2)EF=2AD,理由:如图2,延长AD到M,使得DM=AD,连接BM,由(1)知,△BDM≌△CDA(SAS∴BM=AC,∠M=∠MAC∵AC=AF,∴BM=AF,∵∠MBA+∠M+∠BAM=180°,即∠MBA+∠BAC=180°,又∵∠BAE+∠CAF=180°,∴∠EAF+∠BAC=180°,∴∠EAF=∠MBA,又∵AB=EA,∴△ABM≌△EAF(SAS∴AM=EF,∵AD=DM,∴AM=2AD,∵AM=EF,∴EF=2AD.(3)证明:如图所示,取DE中点H,连接AH并延长至Q点,使得AH=QH,连接QE和QC,∵H为DE中点,D、E为BC三等分点,∴DH=EH,BD=DE=CE,∴DH=CH,在△ABH和△QCH中,BH=CH∠BHA=∠CHQ∴△ABH≌△QCH(SAS同理可得:△ADH≌△QEH,∴AB=CQ,AD=EQ,此时,延长AE交CQ于K点,∵AC+CQ=AC+CK+QK,AC+CK>AK,∴AC+CQ>AK+QK,∵AK+QK=AE+EK+QK>QE,EK+QK>QE,∴AK+QK>AE+QE,∴AC+CQ>AK+QK>AE+QE,∵AB=CQ,AD=EQ,∴AB+AC>AD+AE.5.(23-24七年级下·广东佛山·期中)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD到点E,使DE=AD请根据小明的方法思考:
(1)求得AD的取值范围是___________;【问题解决】请利用上述方法(倍长中线)解决下列三个问题如图,已知∠BAC+∠CDE=180°,AB=AC,DC=DE,P为BE的中点.
(2)如图1,若A,C,D共线,求证:AP平分∠BAC;(3)如图2,若A,C,D不共线,求证:AP⊥DP;(4)如图3,若点C在BE上,记锐角∠BAC=x,且AB=AC=CD=DE,则∠PDC的度数是___________(用含x的代数式表示).【思路点拨】(1)根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,即可进行解答;(2)延长DP交AB延长线于点F,证△APF≌△APD即可;(3)延长DP至点F,使得PF=PD,连接BF、AF、AD,证△APF≌△APD即可;(4)过点C作CM⊥BC交AP于点M,由(3)可得∠APD=90°,证△ACM≌△DCP,用含x的代数式表示出∠PDC即可.【解题过程】(1)∵AD为BC边上的中线,∴BD=CD,在△ADC和△EDB中
BD=CD∴△ADC≌△EDBSAS∴BE=AC=6,∵AB=8,∴8−6<AE<8+6,即2<AE<14,∵DE=AD,∴AD=1∴1<AD<7,故答案为:1<AD<7(2)如下图,DP交AB延长线于点F
∠BAC+∠CDE=180°,∴AF∥∴∠PFB=∠PDE,∠PBF=∠PED,∵P为BE的中点∴BP=PE,∴△BPF≌△EPDAAS∴BF=DE=DC,PD=PF,又∵AB∴AB+BF=AC+DC,即AF=AD,在△APF和△APD中PF=PD∴△APF≌△APD(SSS∴∠PAF=∠PAD(全等三角形的对应角相等),即AP平分∠BAC(3)延长DP至点F,使得PF=PD,连接BF、AF、AD
由(1)同理易知△DPE≌△∴BF=DE=CD,∠E=∠FBP,∵∠BAC+∠CDE=180°,且∠BAC+∠CAD+∠ADC+∠CDE+∠E=360°,∠CAD+∠C+∠ADC=180°,∴∠ABF=∠ACD,AB=AC,∴△ABF≌△ACD(SAS∴AF=AD,∴△APF≌△APD(SSS∴∠APD=∠APF=180°÷2=90°,∴AP⊥DP(4)过点C作CM⊥BC交AP于点M,由(3)可得∠APD=90°,∠BAC=x,∠BAC+∠CDE=180°,AB=AC=CD=DE,
∴∠ACB=180°−x∴∠DCE=90°−∠CDE∴∠ACB和∠DCE互余,∠ACD=∠MCP=∠APD=90°,∴∠ACM=∠DCP=x2∴△ACM≌△DCP(ASA),∴MC=PC,∴∠BPA=45°,又∵∠ACB=90°−x∴∠PDC=∠PAC=∠ACB−∠APB=45°−x故答案为:45°−【模型二:旋转模型(截长补短)】6.(23-24八年级上·湖北武汉·期末)如图,在五边形ABCDE中,∠B=∠E=90°,∠CAD=12∠BAE,AB=AE,且CD=3,AE=4,则五边形ABCDEA.6 B.8 C.10 D.12【思路点拨】本题考查了旋转的性质、全等三角形的判定与性质、三点共线,解题的关键是利用全等的性质将面积进行转化.将△ABC绕点A逆时针旋转至△AEF,首先证明点D,E,F三点共线,证明△ACD≌△AFD(SAS),得到CD=DF=3,S△ACD【解题过程】解:如图,将△ABC绕点A逆时针旋转至△AEF,∵AB=AE,则AF=AC,∠B=∠AED=∠AEF=90°,∴∠DEF=180°,即点D,E,∵∠CAD=1∠BAC+∠DAE=∠DAE+∠EAF=∠CAD,即∠FAD=∠CAD,在△ACD和△AFD中AC=AF∠CAD=∠FAD∴△ACD≌△AFD(∴CD=DF,S∵CD=3,∴DF=3,五边形ABCDE的面积为:S=S=2×1=2×=12.故选:D.7.(23-24八年级上·上海·期中)如图所示,已知AC平分∠BAD,∠B+∠D=180°,CE⊥AB于点E,判断AB、AD与BE之间有怎样的等量关系,并证明.【思路点拨】在AB上截取EF,使EF=BE,联结CF.证明△BCE≌△ECF(SAS),得到∠B=∠BFC,又证明△AFC≌△ADC,得到AF=AD,最后结论可证了.【解题过程】证明:在AB上截取EF,使EF=BE,联结CF.
∵CE⊥AB∴∠BEC=∠FEC=90°在△BCE和△ECF
{
∴△BCE≌△ECF(SAS)
∴∠B=∠BFC
∵∠B+∠D=180°又∵∠BFC+∠AFC=180°∴∠D=∠AFC∵AC平分∠BAD∴∠FAC=∠DAC在△AFC和△ADC中{∴△AFC≌△ADC(AAS)∴AF=AD∵AB=AF+BE+EF∴AB=AD+2BE8.(23-24八年级上·山东临沂·期中)【基本模型】(1)如图1,ABCD是正方形,∠EAF=45°,当E在BC边上,F在CD边上时,请你探究BE、DF与EF之间的数量关系,并证明你的结论.【模型运用】(2)如图2,ABCD是正方形,∠EAF=45°,当E在BC的延长线上,F在CD的延长线上时,请你探究BE、DF与EF之间的数量关系,并证明你的结论.【思路点拨】本题主要考查全等三角形的判定和性质.本题蕴含半角模型,遇到半角经常要通过旋转构造全等三角形.(1)结论:EF=BE+DF.将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF',然后求出∠EAF'=∠EAF=45°,利用“边角边”证明△AEF(2)结论:EF=BE−DF,证明方法同法(1).【解题过程】解:(1)结论:EF=BE+DF.理由:如图1,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF
则:∠F'AB=∠DAF,∠ABF'∴∠ABF'+∠ABC=180°∵∠EAF=45°,∴∠DAF+∠BAE=90°−∠EAF=45°,∴∠BAF∴∠EAF在△AEF和△AEFAF=AF∴△AEF≌△EAF(SAS∴EF=EF又EF∴EF=BE+DF.(2)结论:EF=BE−DF.理由:如图2,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF
则:BF同法(1)可得:△AEF≌△AEF∴EF=EF又EF∴EF=BE−DF.9.(23-24八年级上·湖北武汉·周测)(1)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD(2)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=1【思路点拨】(1)延长CB至M,使BM=DF,连接AM.先证明△ABM≌△ADF,得到AF=AM,∠2=∠3,再证明△AME≌△AFE,得到EF=ME,进行线段代换,问题得证;(2)在BE上截取BG,使BG=DF,连接AG.先证明△ABG≌△ADF,得到AG=AF,再证明△AEG≌△AEF,得到EG=EF,进行线段代换即可证明EF=BE﹣FD.【解题过程】解:(1)证明:如图,延长CB至M,使BM=DF,连接AM.∵∠ABC+∠D=180°,∠1+∠ABC=180°,∴∠1=∠D,在△ABM与△ADF中,AB=AD∠1=∠D∴△ABM≌△ADF(SAS).∴AF=AM,∠2=∠3.∵∠EAF=12∠∴∠2+∠4=12∠BAD=∠∴∠3+∠4=∠EAF,即∠MAE=∠EAF.在△AME与△AFE中,AM=AF∠MAE=∠EAF∴△AME≌△AFE(SAS).∴EF=ME,即EF=BE+BM,∴EF=BE+DF;(2)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:如图,在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵在△ABG与△ADF中,AB=AD∠ABG=∠ADF∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF,∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=12∠∴∠GAE=∠EAF.在△AGE与△AFE中,AG=AF∠GAE=∠EAF∴△AEG≌△AEF,∴EG=EF,∵EG=BE﹣BG,∴EF=BE﹣FD.10.(23-24八年级上·贵州黔东南·期末)【初步探索】(1)如图1,在四边形ABCD中,AB=AD,∠B=∠ADC=90°,∠BAD=120°,E、F分别是BC、CD上的点,且∠EAF=60°,探究图中BE、EF、FD之间的数量关系.小芮同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明:△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=∠180°,∠BAD=120°,E、F分别是BC、CD上的点,且∠EAF=60°,(1)中的结论是否仍然成立,说明理由.【拓展延伸】(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请判断∠EAF与∠DAB的数量关系.并证明你的结论.【思路点拨】本题属于四边形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.(1)根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SAS判定△AEF≌△AGF,可得出EF=GF=DG+DF=BE+DF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先根据SAS判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SAS判定△AEF≌△AGF,可得出EF=GF=DG+DF=BE+DF;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先根据SAS判定△ADG≌△ABE,再根据SAS判定△AEF≌△AGF,得出∠FAE=∠FAG,最后根据∠FAE+∠FAG+∠GAE=360°,推导得到2∠FAE+∠DAB=360°,即可得出结论.【解题过程】解:(1)BE+FD=EF.理由如下:如图1,延长FD到点G,使DG=BE,连接AG,∵∠ADC=90°,∴∠ADG=180°−∠ADC=90°,又∵∠B=90°,∴∠B=∠ADG,在△ABE与△ADG中,AB=AD∠B=∠ADG∴△ABE≌△ADG(SAS∴∠BAE=∠DAG,AE=AG,∵∠BAD=120°,∠EAF=60°,∴∠BAE+∠DAF=∠BAD−∠EAF=60°,∴∠DAG+∠DAF=60°,即∠GAF=60°,∴∠GAF=∠EAF;在△AEF与△AGF中,AE=AG∠EAF=∠GAF∴△AEF≌△AGF(SAS∴EF=GF,∵GF=DG+DF,∴EF=BE+DF,故答案为:BE+FD=EF;(2)(1)中的结论仍成立,理由如下:如图2,延长FD到点G,使DG=BE,连接AG,∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS∴∠BAE=∠DAG,AE=AG,∵∠BAD=120°120°,∠EAF=60°,∴∠BAE+∠DAF=60°,∴∠DAG+∠DAF=60°,∴∠GAF=∠EAF=60°,又∵AF=AF,∴△AEF≌△AGF(SAS∴EF=FG=DG+DF=BE+DF;(3)∠EAF=180°−1证明:如图3,延长DC到点G,使DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,在△ABE与△ADG中,AB=AD∠B=∠ADG∴△ADG≌△ABE(SAS∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD,∴EF=DG+FD,∴EF=GF,在△AEF与△AGF中,AE=AGEF=GF∴△AEF≌△AGF(SSS∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°−1【模型三:“K子”型(一线三垂直)】11.(23-24八年级上·广东江门·阶段练习)已知,△ABC中,∠BAC=90°,AB=AC,直线m过点A,且BD⊥m于D,CE⊥m于E,当直线m绕点A旋转至图1位置时,我们可以发现DE=BD+CE.(1)当直线m绕点A旋转至图2位置时,问:BD与DE、CE的关系如何?请予证明;(2)直线m在绕点A旋转一周的过程中,BD、DE、CE存在哪几种不同的数量关系?(直接写出,不必证明)【思路点拨】(1)利用条件证明△ABD≌(2)根据图,可得BD、DE、CE存在3种不同的数量关系;【解题过程】(1)证明:如图2,∵BD⊥m,CE⊥m,∴∠BDA=∠CEA=90°,∴∠ABD+∠DAB=90°.∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠ABD=∠CAE.在△ABD和△CAE中,∠BDA=∠CBA∠ABD=∠CAB∴△ABD≌∴AD=CE,BD=AE∵DE=AE−AD,∴DE=BD−CE.(2)直线m在绕点A旋转一周的过程中,BD、DE、CE存在3种不同的数量关系:DE=BD+CE,DE=BD−CE,DE=CE−BD.如图1时,DE=BD+CE,如图2时,DE=BD−CE,如图3时,DE=CE−BD,(证明同理)12.(23-24八年级上·贵州铜仁·阶段练习)(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE,BD,CE三条线段的数量关系,并说明理由.【思路点拨】(1)利用已知得出∠CAE=∠ABD,进而利用AAS得出则△ABD≌△CAE,即可得出DE=BD+CE;(2)根据∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;【解题过程】(1)DE=BD+CE.理由如下:∵BD⊥m,CE⊥m,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,∠ABD=∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)DE=BD+CE,理由如下:∵∠BDA=∠AEC=∠BAC,∴∠DBA+∠BAD=∠BAD+∠CAE,∴∠CAE=∠ABD,在△ADB和△CEA中,∠ABD=∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE.13.(23-24八年级上·山西大同·阶段练习)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.(1)如图1.已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小明对图2进行了探究,若∠BAC=90°,AB=AC,直线l经过点A.BD⊥直线l,CE⊥直线l,垂足分别为点D、E.他发现线段DE、BD、CE之间也存在着一定的数量关系,请你直接写出段DE、BD、CE之间的数量关系,(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG(正方形的4条边都相等,4个角都是直角),AH是BC边上的高,延长HA交EG于点I,若BH=3,CH=7,求AI的长.【思路点拨】(1)根据BD⊥直线l,CE⊥直线l,∠BAC=90°,可得∠CAE=∠ABD,利用AAS可证明△ADB≌△CEA,根据DE=AE+AD即可得到DE=BD+CE;(2)同(1)利用AAS可证明△ADB≌△CEA,根据DE=AE−AD即可得到DE=BD−CE;(3)过E作EM⊥HI于M,GN⊥HI的延长线于N,可构造两组一线三直角全等模型,即:△ABH≌△EAM,△AHC≌△GNA,从而可以得到EM=GN,MN=4,再根据△EMI≌△CNI可得MI=NI=2,即可确定AI的长度;【解题过程】(1)证明:∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∠ABD=∠CAE∠BDA=∠CEA∴△ADB≌△CEA∴BD=AE,AD=CE,∴DE=AE+AD=BD+CE;(2)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∠ABD=∠CAE∠BDA=∠CEA∴△ADB≌△CEA∴BD=AE,AD=CE,∴DE=AE−AD=BD−CE;(3)如图,过E作EM⊥HI于M,GN⊥HI的延长线于N,∴∠EMI=∠GNI=90°∵∠BAH+∠EAM=90°,∠BAH+∠ABH=90°,∴∠EAM=∠ABH在△ABH和△EAM中,∠AHB=∠EMA∠ABH=∠EAM∴△ABH≌△EAM(∴BH=AM=3,AH=EM,同理可得:△AHC≌△GNA∴CH=AN=7,AH=GN,即:EM=GN,MN=AN−AM=7−3=4,在△EMI和△CNI中,∠EMI=∠CNI∠EIM=∠CIN∴△EMI≌△CNI(AAS∴MI=NI=1∴AI=AM+MI=3+2=5.14.(23-24八年级上·河北石家庄·阶段练习)通过对如图数学模型的研究学习,解决下列问题:
(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=________,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(3)如图3,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,S1【思路点拨】(1)由△ABC≌△DAE即可求解;(2)作DM⊥AF,EN⊥AF,利用“K字模型”的结论可得△ABF≌△DAM,△ACF≌△EAN,故可推出DM=EN,再证△DMG≌△ENG即可;(3)作PQ⊥CE,AM⊥PQ,FN⊥PQ,利用“K字模型”的结论可得△ADM≌△DCP,△DFN≌△EDP,进一步可证△AMQ≌△FNQ,即可求解.【解题过程】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村卫浴维修合同范本
- 专业护栏安装合同范本
- 住建部合同范本0204
- 北京农村土地租赁合同范本
- 兼职app推广合同范本
- 交房质量纠纷合同范本
- 公司贷款抵押合同范本
- 全国青岛版信息技术七年级下册专题二第6课《阅读材料 滤镜》教学设计
- 包装木箱合同范本
- 剧团戏服赠与合同范本
- WORD一级上机题答案
- 合唱社团第二学期活动记录
- 264省道淮安段(原淮安楚州施河至涟水五港公路)环评报告
- 矢量分析和场论基础
- 进步粘滞流体阻尼器埋件的一次验收合格率
- (完整版)书籍装帧设计
- 第九章古典文献的检索
- 高职院校创新创业教育数字化转型和改革研究
- 初中物理实验全集-ppt
- 合作公司变更函范文(必备6篇)
- 创新收益占有文献综述
评论
0/150
提交评论