版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02截长补短模型基本模型:①截长:在较长的线段上截取另外两条较短的线段。如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS).②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS),例题精讲例1.(截长型)在中,,如图①,当,为的平分线时,在上截取,连接DE,易证.(1)如图②,当,为的角平分线时,线段,,之间又有怎样的数量关系?不需要说明理由,请直接写出你的猜想.(2)如图③,当,为的外角平分线时,线段,,之间又有怎样的数量关系?请写出你的猜想,并对你的猜想进行说明.例2.(补短型)【问题背景】如图1:在四边形中,,,、分别是、上的点,且,小王同学探究此问题的方法是:延长到点,使,连接,再证明,可得出结论.【探索延伸】如图2,若在四边形中,,、分别是,上的点,上述结论是否仍然成立【学以致用】如图3,四边形是边长为5的正方形,,求的周长.例3.(截长补短综合)在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答:.(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.
【变式训练1】(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点D作,垂足为点E,请直接写出线段、、之间的数量关系.【变式训练1】如图,△ABC为等边三角形,直线l过点C,在l上位于C点右侧的点D满足∠BDC=60°(1)如图1,在l上位于C点左侧取一点E,使∠AEC=60°,求证:△AEC≌△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH=120°,且AF=HF,∠HGF=120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.【变式训练2】如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC于点D,过D作DE⊥BA于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)若AB=7.4,AF=1.4,求线段BE的长.【变式训练3】如图,四边形中,,,,M、N分别为AB、AD上的动点,且.求证:.课后训练1.如图,为等边三角形,若,则__________(用含的式子表示).2.如图,已知中,,D为上一点,且,则的度数是_________.3.如图,△ABC中,AB=AC,∠EAF=∠BAC,BF⊥AE
于E交AF于点F,连结CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.4.在数学活动课上,数学老师出示了如下题目:如图①,在四边形中,是边的中点,是的平分线,.求证:.小聪同学发现以下两种方法:方法1:如图②,延长、交于点.方法2:如图③,在上取一点,使,连接、.(1)请你任选一种方法写出这道题的完整的证明过程;(2)如图④,在四边形中,是的平分线,是边的中点,,,求证:.5.如图1,在中,是直角,,、分别是、的平分线,、相交于点.(1)求出的度数;(2)判断与之间的数量关系并说明理由.(提示:在上截取,连接.)(3)如图2,在△中,如果不是直角,而(1)中的其它条件不变,试判断线段、与之间的数量关系并说明理由.6.如图1,在中,,平分,连接,,.(1)求的度数:(2)如图2,连接,交于,连接,求证:;(3)如图3,在(2)的条件下,点为的中点,连接交于点,若,求线段的长.7.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在中,(如图),怎样证明呢?分析:把沿的角平分线翻折,因为,所以,点落在上的点处,即,据以上操作,易证明,所以,又因为,所以.感悟与应用:(1)如图(a),在中,,,平分,试判断和、之间的数量关系,并说明理由;(2)如图(b),在四边形中,平分,,,,①求证:;②求的长.8.如图,在锐角中,,点D,E分别是边上一动点,连接BE交直线于点F.(1)如图1,若,且,求的度数;(2)如图2,若,且,在平面内将线段绕点C顺时针方向旋转60°得到线段,连接,点N是的中点,连接.在点D,E运动过程中,猜想线段之间存在的数量关系,并证明你的猜想.9.在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分∠BA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于2024年度旅游市场开发的旅游项目合作合同3篇
- 2024年度工程建设项目防水材料供应合同2篇
- 2024年度土地使用权转让合同:市区商业用地使用权交易2篇
- 黄金饰品采购合同
- 2024年度劳动合同试用期规定及工资标准2篇
- 著作权转让合同
- 玻璃幕墙施工合同
- 广告牌制作安装施工合同
- 2024版环保涂料研发与生产合同2篇
- 2024年度工程设计咨询劳务外包合同3篇
- 社区养老服务中心运营合作协议
- 2024年宁德监狱五金配件供应与服务合同
- 2024年秋新人教PEP版3年级上册英语教学课件 Unit 4 第4课时 Part B Let's talk
- 《体育与健康》课程标准(高职)
- 建筑吊篮培训考试题及答案
- 建筑灯带施工方案
- 厂区内部装卸承揽协议书
- 第17课 辛亥革命与中华民国的建立(课件)-【中职专用】《中国历史》魅力课堂教学三件套(高教版2023•基础模块)
- 【农村产业融合发展探究的国内外文献综述3300字】
- 三年级除法竖式300道题及答案
- 突发公共卫生事件报告和处置程序
评论
0/150
提交评论