版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题5.3平行线的性质讲练一、知识点平行线的性质:性质1:两直线平行,同位角相等。如图所示,如果a∥b,则=;=;=;=.性质2:两直线平行,内错角相等。如图所示,如果a∥b,则=;=.性质3:两直线平行,同旁内角互补。如图所示,如果a∥b,则+=180°;+=180°。性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥.二、考点点拨与训练考点1:平行线性质的基本应用典例:(2020·全国初三专题练习)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是()A.80° B.90° C.100° D.110°方法或规律点拨此类问题主要考查了平行线的性质以及邻补角、对顶角等基本概念,能灵活运用定理进行分析推理是解此题的关键.巩固练习1、(2020·全国初三专题练习)如图,AB//CD,∠A=50°,则∠1的度数是()A.40° B.50° C.130° D.150°2、(2020·山东初二期末)如图,已知∠1=∠2,∠3=65°,那么∠4的度数是()A.55° B.95° C.115° D.145°3、(2020·山东初二期末)如图,已知CD∥BE,
如果∠1=60°,
那么∠B的度数为()A.70° B.100° C.110° D.120°考点2:应用平行线的性质探究几何量之间的关系典例:(2019·武汉市梅苑学校初一期中)如图,在△ABC中,∠1=∠2,ED//BC,CD⊥AB于点D.求证:∠FGB=90°.方法或规律点拨本题考查了平行线的判定与性质的综合应用,熟练掌握平行线的判定与性质是解答本题的关键.巩固练习1、(2019·浙江初一期中)如图,若,则、、之间的关系为______.2、(2019·天津初一期末)完成下面的证明.已知:如图,D是BC上任意一点,BE⊥AD,交AD的延长线于点E,CF⊥AD,垂足为F.求证:∠1=∠2.证明:∵BE⊥AD,∴∠BED=().∵CF⊥AD,∴∠CFD=.∴∠BED=∠CFD.∴BE∥CF().∴∠1=∠2().3、(2020·甘肃初二期末)如图,已知∠1+∠2=180°,∠3=B,(1)证明:EF∥AB.(2)试判断∠AED与∠C的大小关系,并说明你的理由.考点3:平行线性质和判定的综合应用典例:(2019·河南初一期末)(1)(感知)如图①,,点在直线与之间,连接、,试说明.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点作.(),(已知),EF(辅助线作法),(),(),,().(2)(探究)当点在如图②的位置时,其他条件不变,试说明.(3)(应用)如图③,延长线段交直线于点,已知,,则的度数为.(请直接写出答案)方法或规律点拨本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.巩固练习1、(2019·河北初二期末)课上老师呈现一个问题:下面提供三种思路:思路一:过点F作MN∥CD(如图甲);思路二:过P作PN∥EF,交AB于点N;思路三:过O作ON∥FG,交CD于点N.解答下列问题:(1)根据思路一(图甲),可求得∠EFG的度数为;(2)根据思路二、三分别在图乙和图丙中作出符合要求的辅助线;(3)请你从思路二、思路三中任选其中一种,写出求∠EFG度数的解答过程.2、(2020·河南初一期末)问题情景:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.(1)数学活动小组经过讨论形成下列推理,请你补全推理依据.如图2,过点P作PE∥AB,∵PE∥AB(作图知)又∵AB∥CD,∴PE∥CD.()∴∠A+∠APE=180°.∠C+∠CPE=180°.()∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=α,∠BCP=β,求∠CPD与α、β之间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考勤管理亮点
- 游南岳衡山班队活动
- 妊娠晚期健康护理
- 2024年点火模块项目投资申请报告代可行性研究报告
- 2024年表面涂镀材料项目投资申请报告
- 装饰布项目可行性研究报告
- 年产xx拾音器项目建议书
- 年产xx录像编辑设备项目建议书
- 年产xxx氟碳树酯涂料项目可行性研究报告(立项说明)
- 新建中碱玻纤纱项目立项申请报告
- 初中体育《篮球单元计划及体前变向换手运球》教学设计
- 万物之理-爱因斯坦之梦智慧树知到课后章节答案2023年下中国海洋大学
- 项目备案申请表
- 洛洛学专注:用故事帮助容易走神的孩子
- 2.1.2+岩石圈物质循环+第二课时+课件【知识精研提升】高二地理湘教版(2019)选择性必修1
- 中西方文化差异PPT
- 2、UV-固化-过程确认报告-PV-01.2-A0
- 阿基米德的故事课件
- 禅宗六祖慧能-课件
- 一例胆总管结石术后患者的循证护理查房
- 你来比划我来猜词语(经典前沿词汇版)
评论
0/150
提交评论