版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考模拟试题PAGEPAGE1梧州市2023届高三第一次模拟测试文科数学一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,,则()A. B. C. D.2.若复数z满足,则在复平面内的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.从某中学甲、乙两班各随机抽取10名同学,测量他们的身高(单位:),所得数据用茎叶图表示如图,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是()A.甲乙两班同学身高的极差相等 B.甲乙两班同学身高的平均值相等C.甲乙两班同学身高中位数相等 D.乙班同学身高在以上的人数较多4.已知向量,满足,,,则()A.3 B. C. D.45.我们可以把看作每天的“进步”率都是1%,一年后是;而把看作每天的“落后”率都是1%,一年后是.可以计算得到,一年后的“进步”是“落后”的倍.如果每天的“进步”率和“落后”率都是10%,至少经过()天后,“进步”是“落后”的1000倍.(,)A.31 B.33 C.35 D.376.在中,三个内角A,B,C所对的边分别为a,b,c,且.若,,则()A.2 B. C.4 D.7.直线与圆交两点.若,则的面积为()A. B. C. D.8.在正方体中,E,F分别是线段,的中点,则异面直线,EF所成角余弦值是()A. B. C. D.9.已知定义在R上的函数在上单调递增,若函数为偶函数,且,则不等式的解集为()A. B. C. D.10.在三棱锥中,已知平面,,.若三棱锥各顶点都在球O的球面上,则球O的表面积为()A. B. C. D.11.若函数的部分图像如图所示,直线为函数图像的一条对称轴,则函数的单调递减区间为()A. B.C. D.12.如图所示,抛物线,为过焦点的弦,过分别作抛物线的切线,两切线交于点,设,则:①若的斜率为1,则;②若的斜率为1,则;③;④.以上结论正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共4小题,每小题5分,共20分.13.实数x,y满足:,则的最大值是____________.14.已知,则_________.15.过四点,,,中的三点的双曲线方程为,则的渐近线方程为_______.16.已知函数,若关于x方程有5个不同的实数根,则a的取值范围为_______.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知为数列的前n项和,.(1)求数列的通项公式;(2)记,求前项的和.18.近年来,随着社会对教育的重视,家庭的平均教育支出增长较快,某机构随机调查了某市2016-2022年的家庭教育支出(单位:万元),得到如下折线图.(附:年份代码1-7分别对应2016-2022年).经计算得,,,,.(1)用线性回归模型拟合与的关系,求出相关系数r,并说明与相关性的强弱;(参考:若,则线性相关程度一般,若,则线性相关程度较高,计算r时精确度为0.01)(2)求出与的回归直线方程;(3)若2024年该市某家庭总支出为10万元,预测2024年该家庭的教育支出.附:①相关系数;②在回归直线方程,,.19.边长为1的正方形中,点M,N分别是DC,BC的中点,现将,分别沿AN,AM折起,使得B,D两点重合于点P,连接PC,得到四棱锥.(1)证明:平面平面;(2)求四棱锥体积.20.已知椭圆的长轴长为4,且经过点,.(1)求椭圆的方程;(2)直线的斜率为,且与椭圆交于,两点(异于点,过点作的角平分线交椭圆于另一点.证明:直线与坐标轴平行.21.已知函数.(1)求函数的最小值;(2)证明:.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.〖选修4-4:坐标系与参数方程〗22.在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度版权许可合同:音乐作品的在线直播与播放
- 二零二四年度版权代理合同标的为作家作品推广
- 二零二四年二手制冷设备买卖合同
- 瓷砖施工2024年度进度计划合同
- 2024年度建筑工程施工合同:地铁站房建设工程
- 2024年油罐车物流配送合同:配送服务与合作协议
- 关于2024年度研发合作合同标的和研发服务具体内容
- 二零二四年度文化旅游开发合作合同
- 二零二四年度教育培训合同提供专业课程与实习机会
- 2024年度瓷砖产品展会展示合同
- 技术服务方案范文七篇
- 儿科题库及答案1000题
- 人工智能与大模型通论
- 元奕咨询-2024类器官和器官芯片行业发展现状分析和趋势创想
- 机房网络改造升级方案
- 食品安全日管控、周排查及月调度记录表
- 物理-湖南省长沙市(炎嘚英才大联考)长郡中学2025届高三上学期月考试卷(一)试题和答案
- (完整版)跌倒风险评估量表
- ISO27001 2022版内审全套资料(内审计划+检查表+审核报告等)
- 老旧排水管网改造投标技术方案(技术标)
- 大学生国家安全观论文1500字【3篇】
评论
0/150
提交评论