内蒙古呼伦贝尔市2025届高二数学第一学期期末复习检测模拟试题含解析_第1页
内蒙古呼伦贝尔市2025届高二数学第一学期期末复习检测模拟试题含解析_第2页
内蒙古呼伦贝尔市2025届高二数学第一学期期末复习检测模拟试题含解析_第3页
内蒙古呼伦贝尔市2025届高二数学第一学期期末复习检测模拟试题含解析_第4页
内蒙古呼伦贝尔市2025届高二数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古呼伦贝尔市2025届高二数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用反证法证明“若a,b∈R,,则a,b不全为0”时,假设正确的是()A.a,b中只有一个为0 B.a,b至少一个不为0C.a,b至少有一个为0 D.a,b全为02.过点,且斜率为2的直线方程是A. B.C. D.3.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为()A. B.C.1 D.24.若定义在R上的函数满足,则不等式的解集为()A. B.C. D.5.设.若,则=()A. B.C. D.e6.在等差数列中,,且,,,构成等比数列,则公差()A.0或2 B.2C.0 D.0或7.已知双曲线的离心率为,则双曲线C的渐近线方程为()A. B.C. D.8.已知等比数列中,,,则公比()A. B.C. D.9.在长方体中,,,分别是棱,的中点,则异面直线,的夹角为()A. B.C. D.10.过椭圆右焦点作x轴的垂线,并交C于A,B两点,直线l过C的左焦点和上顶点.若以线段AB为直径的圆与有2个公共点,则C的离心率e的取值范围是()A. B.C. D.11.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.012.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列满足,请写出一个符合条件的通项公式______14.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.15.已知等差数列的公差不为零,若,,成等比数列,则______.16.若“”是真命题,则实数的最小值为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的离心率为,左、右焦点分别为、,椭圆上的点到左焦点最近的距离为.(1)求椭圆C的方程;(2)若经过点的直线与椭圆C交于M,N两点,当的面积取得最大值时,求直线的方程.18.(12分)在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.19.(12分)如图,在长方体中,,,,M为上一点,且(1)求点到平面的距离;(2)求二面角的余弦值20.(12分)已知圆M过C(1,﹣1),D(﹣1,1)两点,且圆心M在x+y﹣2=0上.(1)求圆M的方程;(2)设P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.21.(12分)椭圆的左、右焦点分别为,短轴的一个端点到的距离为,且椭圆过点过且不与两坐标轴平行的直线交椭圆于两点,点与点关于轴对称.(1)求椭圆的方程(2)当直线的斜率为1时,求的面积;(3)若点,求证:三点共线.22.(10分)如图,在四棱锥中,底面ABCD是边长为1的菱形,且,侧棱,,M是PC的中点,设,,(1)试用,,表示向量;(2)求BM的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】把要证的结论否定之后,即得所求的反设【详解】由于“a,b不全为0”的否定为:“a,b全为0”,所以假设正确的是a,b全为0.故选:D2、A【解析】由直线点斜式计算出直线方程.【详解】因为直线过点,且斜率为2,所以该直线方程为,即.故选【点睛】本题考查了求直线方程,由题意已知点坐标和斜率,故选用点斜式即可求出答案,较为简单.3、D【解析】由题意知,抛物线的准线l:y=-1,过A作AA1⊥l于A1,过B作BB1⊥l于B1,设弦AB的中点为M,过M作MM1⊥l于M1.则|MM1|=.|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x轴的距离d≥2.4、B【解析】构造函数,根据题意,求得其单调性,利用函数单调性解不等式即可.【详解】构造函数,则,故在上单调递减;又,故可得,则,即,解得,故不等式解集为.故选:B.【点睛】本题考察利用导数研究函数单调性,以及利用函数单调性求解不等式,解决本题的关键是根据题意构造函数,属中档题.5、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.6、A【解析】根据等比中项的性质和等差数列的通项公式建立方程,可解得公差d得选项.【详解】解:因为在等差数列中,,且,,,构成等比数列,所以,即,所以,解得或,故选:A.7、B【解析】根据a的值和离心率可求得b,从而求得渐近线方程.【详解】由双曲线的离心率为,知,则,即有,故,所以双曲线C的渐近线方程为,即,故选:B.8、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.9、C【解析】设出长度,建立空间直角坐标系,根据向量求异面直线所成角即可.【详解】如下图所示,以,,所在直线方向,,轴,建立空间直角坐标系,设,,,,,,所以,,设异面直线,的夹角为,所以,所以,即异面直线,的夹角为.故选:C.10、A【解析】求得以为直径的圆的圆心和半径,求得直线的方程,利用圆心到直线的距离小于半径列不等式,化简后求得椭圆离心率的取值范围.【详解】椭圆的左焦点,右焦点,上顶点,,所以为直径的圆的圆心为,半径为.直线的方程为,由于以线段为直径的圆与相交,所以,,,,,所以椭圆的离心率的取值范围是.故选:A11、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B12、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D二、填空题:本题共4小题,每小题5分,共20分。13、3(答案不唯一)【解析】由已知条件结合等差数列的性质可得,则,从而可写出数列的一个通项公式【详解】因为是等差数列,且,所以,当公差为0时,;公差为1时,;…故答案为:3(答案为唯一)14、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.15、0【解析】设等差数列的公差为,,根据,,成等比数列,得到,再根据等差数列的通项公式可得结果.【详解】设等差数列的公差为,,因为,,成等比数列,所以,所以,整理得,因为,所以,所以.故答案为:0.【点睛】本题考查了等比中项,考查了等差数列通项公式基本量运算,属于基础题.16、1【解析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意得,,进而解方程即可得答案;(2)根据题意设直线的方程,,,进而,再联立方程,结合韦达定理求解即可.【小问1详解】解:因为椭圆C:的离心率为,所以,因为椭圆上的点到左焦点最近的距离为,所以所以,所以椭圆C的方程为.【小问2详解】解:根据题意,设直线的方程,,设,联立方程得,所以,解得或.,所以的面积为令,则,当且仅当,即时,等号成立.所以当的面积取得最大值时,直线的方程为.18、(1)(2)【解析】(1)先求出AB的斜率,再利用点斜式写出方程即可;(2)先求出,再求出C到AB的距离即可得到答案.【小问1详解】由已知,,所以直线的方程为,即.【小问2详解】,C到直线AB的距离为,所以的面积为.19、(1)(2)【解析】(1)以A为原点,以AB、AD、所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,利用空间向量求解,(2)求出和的法向量,利用空间向量求解【小问1详解】以A为原点,以AB、AD、所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系由,,,,所以,,,因此,,,设平面的法向量,则,,所以,取,则,,于是,所以点到平面的距离【小问2详解】由,,设平面的法向量,则,,所以,取,则,,于是,由(1)知平面的法向量为,记二面角的平面角为,则,由图可知二面角为锐角,所以所求二面角的余弦值为20、(1);(2).【解析】(1)设圆的方程为:,由已知列出方程组,解之可得圆的方程;(2)由已知得四边形的面积为,即有,又有.因此要求的最小值,只需求的最小值即可,根据点到直线的距离公式可求得答案.【详解】解:(1)设圆方程为:,根据题意得,故所求圆M的方程为:;(2)如图,四边形的面积为,即又,所以,而,即.因此要求的最小值,只需求的最小值即可,的最小值即为点到直线的距离所以,四边形面积的最小值为.21、(1);(2);(3)证明见解析.【解析】(1)根据已知求出即得椭圆的方程;(2)联立直线和椭圆的方程求出弦长和三角形的高即得解;(3)联立直线和椭圆的方程,得到韦达定理,再利用平面向量证明.【小问1详解】解:由题得,所以椭圆方程为,因为椭圆过点所以,所以所以椭圆的方程为.【小问2详解】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论