版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海师大二附中2025届数学高二上期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,三个内角A,B,C的对边分别为a,b,c,若,,,则的面积为()A. B.1C. D.22.年月日,很多人的微信圈都在转发这样一条微信:“,所遇皆为对,所做皆称心””.形如“”的数字叫“回文数”,即从左到右读和从右到左读都一样的正整数,则位的回文数共有()A. B.C. D.3.在的展开式中,的系数为()A. B.5C. D.104.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国宝贵的数学遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A. B.C. D.5.已知,,,,则下列不等关系正确的是()A. B.C. D.6.不等式的一个必要不充分条件是()A. B.C. D.7.在数列中,,则此数列最大项的值是()A.102 B.C. D.1088.若方程表示焦点在y轴上的双曲线,则实数m的取值范围为()A. B.C. D.且9.直线与圆相交与A,B两点,则AB的长等于()A3 B.4C.6 D.110.直线的倾斜角为()A. B.C. D.11.若直线与平行,则m的值为()A.-2 B.-1或-2C.1或-2 D.112.已知数列的前n项和为,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.狄利克雷是十九世纪德国杰出的数学家,对数论、数学分析和数学物理有突出贡献.狄利克雷曾提出了“狄利克雷函数”.若,根据“狄利克雷函数”可求___________.14.如图所示,高尔顿钉板是一个关于概率的模型,每一黑点表示钉在板上的一颗钉子,它们彼此的距离均相等,上一层的每一颗的水平位置恰好位于下一层的两颗正中间.小球每次下落时,将随机的向两边等概率的落下.当有大量的小球都落下时,最终在钉板下面不同位置收集到小球.现有5个小球从正上方落下,则恰有3个小球落到2号位置的概率是______15.若椭圆:的长轴长为4,焦距为2,则椭圆的标准方程为______.16.i为虚数单位,复数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某班主任对全班名学生进行了作业量多少与手机网游的调查,数据如下表:认为作业多认为作业不多总数喜欢手机网游不喜欢手机网游总数(1)若随机地抽问这个班的一名学生,分别求事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率;(2)若在“认为作业多”的学生中已经用分层抽样的方法选取了名学生.现要从这名学生中任取名学生了解情况,求其中恰有名“不喜欢手机网游”的学生的概率18.(12分)已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(1)求椭圆的标准方程;(2)已知直线与椭圆交于、两点,、是椭圆上位于直线两侧的动点,且直线的斜率为,求四边形面积的最大值.19.(12分)如图所示,四棱锥的底面为矩形,,,过底面对角线作与平行的平面交于点(1)求二面角的余弦值;(2)求与所成角的余弦值;(3)求与平面所成角的正弦值20.(12分)记是等差数列的前项和,若.(1)求数列的通项公式;(2)求使成立的的最小值.21.(12分)如图,正四棱锥底面的四个顶点在球的同一个大圆上,点在球面上,且正四棱锥的体积为.(1)该正四棱锥的表面积的大小;(2)二面角的大小.(结果用反三角表示)22.(10分)已知椭圆一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由余弦定理求出,利用正弦定理将边化角,再根据二倍角公式得到,即可得到,最后利用面积公式计算可得;【详解】解:因为,又,所以,因为,所以,所以,因为,所以,即,所以或,即或(舍去),所以,因为,所以,所以;故选:C2、C【解析】根据“回文数”的对称性,只需计算前位数的排法种数即可,确定这四位数的选数的种数,利用分步乘法计数原理可得结果.【详解】根据“回文数”的对称性,只需计算前位数的排法种数即可,首位数不能放零,首位数共有种选择,第二位、第三位、第四位数均有种选择,因此,位的回文数共有个.故选:C.3、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项4、B【解析】此点取自该圆内接正六边形的概率是正六边形面积除以圆的面积,分别求出即可.【详解】如图,在单位圆中作其内接正六边形,该正六边形是六个边长等于半径的正三角形,其面积,圆的面积为则所求概率.故选:B【点睛】此题考查几何概率模型求解,关键在于准确求出正六边形的面积和圆的面积.5、C【解析】不等式性质相关的题型,可以通过举反例的方式判断正误.【详解】若、均为负数,因为,则,故A错.若、,则,故B错.由不等式的性质可知,因为,所以,故C对.若,因为,所以,故D错.故选:C.6、B【解析】解不等式,由此判断必要不充分条件.【详解】,解得,所以不等式的一个必要不充分条件是.故选:B7、D【解析】将将看作一个二次函数,利用二次函数的性质求解.【详解】将看作一个二次函数,其对称轴为,开口向下,因为,所以当时,取得最大值,故选:D8、A【解析】根据双曲线定义,且焦点在y轴上,则可直接列出相关不等式.【详解】若方程表示焦点在y轴上的双曲线,则必有:,且解得:故选:9、C【解析】根据弦长公式即可求出【详解】因为圆心到直线的距离为,所以AB的长等于故选:C10、D【解析】由直线斜率概念可写出倾斜角的正切值,进而可求出倾斜角.【详解】因为直线的斜率为,所以倾斜角.故选D【点睛】本题主要考查直线的倾斜角,由斜率的概念,即可求出结果.11、C【解析】利用两直线平行的判定有,即可求参数值.【详解】由题设,,可得或.经验证不重合,满足题意,故选:C.12、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由“狄利克雷函数”解析式,先求出,再根据指数函数的解析式求即可.【详解】由题设,,则.故答案:114、【解析】先研究一个小球从正上方落下的情况,从而可求出一个小球从正上方落下落到2号位置的概率,进而可求出5个小球从正上方落下,则恰有3个小球落到2号位置的概率【详解】如图所示,先研究一个小球从正上方落下的情况,11,12,13,14指小球第2层到第3层的线路图,以此类推,小球所有的路线情况如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16种情况,其中落入2号位置的有4种,所以每个球落入2号位置的概率为,所以5个小球从正上方落下,则恰有3个小球落到2号位置的概率为,故答案为:15、【解析】由焦距可得c,长轴长得到a,再根据可得答案.【详解】因为椭圆的长轴长为4,则,焦距为2,由,得,则椭圆的标准方程为:.故答案为:.16、【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简求解即可.【详解】故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率分别为、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)确定所选的名学生中,“不喜欢手机网游”和“喜欢手机网游”的学生人数,加以标记,列举出所有的基本事件,确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由题意可知,全班名学生中,“认为作业不多”的学生人数为人,“喜欢手机网游且认为作业多”的学生人数为人,因此,随机地抽问这个班的一名学生,事件“认为作业不多”的概率为,事件“喜欢手机网游且认为作业多”的概率为.【小问2详解】解:在“认为作业多”的学生中已经用分层抽样的方法选取了名学生,这名学生中“不喜欢手机网游”的学生人数为,记为,名学生中“喜欢手机网游”的学生人数为,分别记为、、、,从这名学生中任取名学生,所有的基本事件有:、、、、、、、、、,共种,其中,事件“恰有名“不喜欢手机网游”的学生”包含的基本事件有:、、、,共种,故所求概率为.18、(1)(2)【解析】(1)根据离心率的定义以及椭圆与抛物线焦点的关系,可以求出椭圆方程;(2)根据题意,可以利用铅锤底水平高的方法求四边形APBQ的面积,即是要利用韦达定理算出.【小问1详解】由题意,即;抛物线,焦点为,故,所以椭圆C的标准方程为:.【小问2详解】由题意作图如下:设AB直线的方程为:,并设点,,联立方程:得:,∴……①,……②,;由于A,B两点在直线PQ的两边(如上图),所以,即,将①②带入得:,解得;即由题意直线PQ的方程为,联立方程解得,,∴;将线段PQ看做铅锤底,A,B两点的横坐标之差看做水平高,得四边形APBQ的面积为:,当且仅当m=0时取最大值,而,所以的最大值为.19、(1);(2);(3).【解析】(1)设,连接、,证明出平面,推导出为的中点,然后以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,利用空间向量法可求得二面角的余弦值;(2)利用空间向量法可求得与所成角的余弦值;(3)利用空间向量法可求得与平面所成角的正弦值.【小问1详解】解:设,则为、的中点,连接、,因为平面,平面,平面平面,则,因为为的中点,则为的中点,因为,为的中点,则,同理可证,,平面,,,则,,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、、、、,设平面的法向量为,,,由,取,可得,易知平面的一个法向量为,.由图可知,二面角的平面角为锐角,因此,二面角的余弦值为.【小问2详解】解:,,,因此,与所成角的余弦值为.【小问3详解】解:,,因此,与平面所成角的正弦值为.20、(1)(2)4【解析】(1)根据题意得,解方程得,进而得通项公式;(2)由题知,进而解不等式得或,再根据即可得答案.【小问1详解】设等差数列的公差为,由得=0,由题意知,,解得,所以d=2所以.小问2详解】解:由(1)可得,由可得,即,解得或,因为,所以,正整数的最小值为.21、(1)(2)【解析】(1)首先求出球的半径,即可得到四棱锥的棱长,再根据锥体的表面积公式计算可得;(2)取中点,联结,即可得到,从而得到为二面角的平面角,再利用余弦定理计算可得.【小问1详解】解:设球的半径为,则解得,所以所有棱长均为,因此【小问2详解】解:取中点,联结,因为均为正三角形,因此,即为二面角的平面角.,因此二面角的大小为.22、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论