![2025届浙江省“七彩阳光”高三数学第一学期期末学业质量监测试题含解析_第1页](http://file4.renrendoc.com/view8/M03/11/30/wKhkGWcYHmuAZe24AAIommb1Fa4833.jpg)
![2025届浙江省“七彩阳光”高三数学第一学期期末学业质量监测试题含解析_第2页](http://file4.renrendoc.com/view8/M03/11/30/wKhkGWcYHmuAZe24AAIommb1Fa48332.jpg)
![2025届浙江省“七彩阳光”高三数学第一学期期末学业质量监测试题含解析_第3页](http://file4.renrendoc.com/view8/M03/11/30/wKhkGWcYHmuAZe24AAIommb1Fa48333.jpg)
![2025届浙江省“七彩阳光”高三数学第一学期期末学业质量监测试题含解析_第4页](http://file4.renrendoc.com/view8/M03/11/30/wKhkGWcYHmuAZe24AAIommb1Fa48334.jpg)
![2025届浙江省“七彩阳光”高三数学第一学期期末学业质量监测试题含解析_第5页](http://file4.renrendoc.com/view8/M03/11/30/wKhkGWcYHmuAZe24AAIommb1Fa48335.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省“七彩阳光”高三数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为()A. B. C. D.2.已知函数为奇函数,则()A. B.1 C.2 D.33.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间4.设函数若关于的方程有四个实数解,其中,则的取值范围是()A. B. C. D.5.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于()A. B.8 C. D.46.若,则下列关系式正确的个数是()①②③④A.1 B.2 C.3 D.47.已知函数,若恒成立,则满足条件的的个数为()A.0 B.1 C.2 D.38.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.9.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为()A. B. C. D.10.一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为()A. B. C. D.11.已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,,,则,,的大小关系(用不等号连接)为()A. B.C. D.12.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知以x±2y=0为渐近线的双曲线经过点,则该双曲线的标准方程为________.14.已知平面向量、的夹角为,且,则的最大值是_____.15.已知实数,满足约束条件则的最大值为________.16.各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列.定义随机变量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X来衡量家长对小孩饮食习惯的了解程度.(1)若参与游戏的家长对小孩的饮食习惯完全不了解.(ⅰ)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;(ⅱ)求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X<4,请判断这位家长对小孩饮食习惯是否了解,说明理由.18.(12分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围.19.(12分)如图,在中,,,点在线段上.(1)若,求的长;(2)若,,求的面积.20.(12分)设函数.(1)若,时,在上单调递减,求的取值范围;(2)若,,,求证:当时,.21.(12分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.22.(10分)(1)求曲线和曲线围成图形的面积;(2)化简求值:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率.【详解】设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即.故选:C【点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.2、B【解析】
根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.3、D【解析】
可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题4、B【解析】
画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.5、C【解析】
将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.【详解】F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故选C.【点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.6、D【解析】
a,b可看成是与和交点的横坐标,画出图象,数形结合处理.【详解】令,,作出图象如图,由,的图象可知,,,②正确;,,有,①正确;,,有,③正确;,,有,④正确.故选:D.【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.7、C【解析】
由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.【详解】①当时,,满足题意,②当时,,,,,故不恒成立,③当时,设,,令,得,,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合①②③得:满足条件的的个数是2个,故选:.【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.8、A【解析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【点睛】本道题考查了抛物线的基本性质,难度中等.9、B【解析】试题分析:由题意得,,所以,,所求双曲线方程为.考点:双曲线方程.10、A【解析】
由题意可知,随机变量的可能取值有、、、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【详解】由题意可知,随机变量的可能取值有、、、,则,,,.因此,随机变量的数学期望为.故选:A.【点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.11、A【解析】因为,所以,即周期为4,因为为奇函数,所以可作一个周期[-2e,2e]示意图,如图在(0,1)单调递增,因为,因此,选A.点睛:函数对称性代数表示(1)函数为奇函数,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则12、B【解析】
根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选B.【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设双曲线方程为,代入点,计算得到答案.【详解】双曲线渐近线为,则设双曲线方程为:,代入点,则.故双曲线方程为:.故答案为:.【点睛】本题考查了根据渐近线求双曲线,设双曲线方程为是解题的关键.14、【解析】
建立平面直角坐标系,设,可得,进而可得出,,由此将转化为以为自变量的三角函数,利用三角恒等变换思想以及正弦函数的有界性可得出结果.【详解】根据题意建立平面直角坐标系如图所示,设,,以、为邻边作平行四边形,则,设,则,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,则,当时,取最大值.故答案为:.【点睛】本题考查了向量的数量积最值的计算,将问题转化为角的三角函数的最值问题是解答的关键,考查计算能力,属于难题.15、1【解析】
作出约束条件表示的可行域,转化目标函数为,当目标函数经过点时,直线的截距最大,取得最大值,即得解.【详解】作出约束条件表示的可行域是以为顶点的三角形及其内部,转化目标函数为当目标函数经过点时,直线的截距最大此时取得最大值1.故答案为:1【点睛】本题考查了线性规划问题,考查了学生转化划归,数形结合,数学运算能力,属于基础题.16、【解析】
将已知由前n项和定义整理为,再由等比数列性质求得公比,最后由数列各项均为正数,舍根得解.【详解】因为即又等比数列各项均为正数,故故答案为:【点睛】本题考查在等比数列中由前n项和关系求公比,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(ⅰ)(ⅱ)分布表见解析;(2)理由见解析【解析】
(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,家长的排序有种等可能结果,利用列举法求出其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,由此能求出他们在一轮游戏中,对四种食物排出的序号完全不同的概率.
(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,由此能求出X的分布列.
(2)假设家长对小孩的饮食习惯完全不了解,在一轮游戏中,P(X<4)=P(X=0)+P(X=2)=,三轮游戏结果都满足“X<4”的概率为,这个结果发生的可能性很小,从而这位家长对小孩饮食习惯比较了解.【详解】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为xA,xB,xC,xD为1234的情况,家长的排序有=24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家长的排序与对应位置的数字完全不同的概率P=.基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序xA,xB,xC,xD为1423的情况,四种食物按1234的排列为ACDB,再研究yAyByCyD的情况即可,其实这样处理后与第一种情况的计算结果是一致的,∴他们在一轮游戏中,对四种食物排出的序号完全不同的概率为.(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表:X02468101214161820P(2)这位家长对小孩的饮食习惯比较了解.理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X<4)=P(X=0)+P(X=2)=,三轮游戏结果都满足“X<4”的概率为()3=,这个结果发生的可能性很小,∴这位家长对小孩饮食习惯比较了解.【点睛】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是中档题.18、(1);(2)【解析】
(1)根据横坐标为3的点与抛物线焦点的距离为4,由抛物线的定义得到求解.(2)设过点的直线方程为,根据直线与圆相切,则有,整理得:,根据题意,建立,将韦达定理代入求解.【详解】(1)因为横坐标为3的点与抛物线焦点的距离为4,由抛物线的定义得:,解得:.(2)设过点的直线方程为,因为直线与圆相切,所以,整理得:,,由题意得:所以,,因为,所以,所以.【点睛】本题主要考查抛物线的定义及点与抛物线,直线与圆的位置关系,还考查了运算求解的能力,属于中档题.19、(1)(2)【解析】
(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积.【详解】(1)由,得,所以.由正弦定理得,,即,得.(2)由正弦定理,在中,,①在中,,②又,,,由得,由余弦定理得,即,解得,所以的面积.【点睛】本题主要考查正余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于基础题.20、(1)(2)见解析【解析】
(1)在上单调递减等价于在恒成立,分离参数即可解决.(2)先对求导,化简后根据零点存在性定理判断唯一零点所在区间,构造函数利用基本不等式求解即可.【详解】(1),时,,,∵在上单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司股权赠与合同范本
- 业务转让交易合同范本模板
- 养殖厂建设合同范本
- 个人保证金合同范例
- epc附加合同范本
- pe水管采购合同范本
- 个人玉米收购合同范例
- 个人转让合同范本
- 代理 经销 合同范本
- 万泰装饰合同范本
- 2024-2025学年第二学期开学典礼-开学典礼校长致辞
- 生物(A版)-安徽省合肥一中(省十联考)2024-2025学年度高二年级上学期期末测试试题和答案
- 2024年资助政策主题班会课件
- 中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)
- 部编四年级道德与法治下册全册教案(含反思)
- ASM铸造缺陷的国际分类7大类(学习版0228)
- 关于汽车行业必须了解的缩写含义
- 天津滨海新区发展情况汇报
- 西师版三年级下册音乐教案(共41页)
- 建筑材料供货协议模板
- 《关于贯彻执行〈重庆市企业职工病假待遇暂行规定〉若干问题的意见
评论
0/150
提交评论