




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省温州新力量联盟高一数学第一学期期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.可以化简成()A. B.C. D.2.已知函数,若(其中.),则的最小值为()A. B.C.2 D.43.设,则A. B.C. D.4.若存在正数x使成立,则a的取值范围是A. B.C. D.5.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.6.圆x2+y2+2x﹣4y+1=0的半径为()A.1 B.C.2 D.47.若,则A. B.C. D.8.函数与(且)在同一坐标系中的图象可能是()A. B.C. D.9.已知函数,则()A.5 B.2C.0 D.110.设,,,则a,b,c的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若存在常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立(或和恒成立),则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数b的取值范围是______12.已知,且,则______.13.在正方体中,直线与平面所成角的正弦值为________14.已知集合,,则__________15.已知幂函数f(x)是奇函数且在上是减函数,请写出f(x)的一个表达式________16.函数的定义域是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当有是实数解时,求实数的取值范围;(2)若,对一切恒成立,求实数的取值范围.18.已知是定义在上的偶函数,且时,(1)求函数的表达式;(2)判断并证明函数在区间上的单调性19.已知函数且图象经过点(1)求实数的值;(2)若,求实数的取值范围.20.目前,"新冠肺炎"在我国得到了很好的遏制,但在世界其他一些国家还大肆流行.因防疫需要,某学校决定对教室采用药熏消毒法进行消毒,药熏开始前要求学生全部离开教室.已知在药熏过程中,教室内每立方米空气中的药物含量(毫克)与药熏时间(小时)成正比;当药熏过程结束,药物即释放完毕,教室内每立方米空气中的药物含量(毫克)达到最大值.此后,教室内每立方米空气中的药物含量(毫克)与时间(小时)的函数关系式为(为常数).已知从药熏开始,教室内每立方米空气中的药物含量(毫克)关于时间(小时)的变化曲线如图所示.(1)从药熏开始,求每立方米空气中的药物含量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的药物含量不高于0.125毫克时,学生方可进入教室,那么从药熏开始,至少需要经过多少小时后,学生才能回到教室?21.如图,三棱柱中,侧棱垂直底面,,,点是棱的中点(1)证明:平面平面;(2)求三棱锥的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据指数幂和根式的运算性质转化即可【详解】解:,故选:B2、B【解析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B3、B【解析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小4、D【解析】根据题意,分析可得,设,利用函数的单调性与最值,即可求解,得到答案【详解】根据题意,,设,由基本初等函数的性质,得则函数在R上为增函数,且,则在上,恒成立;若存在正数x使成立,即有正实数解,必有;即a的取值范围为;故选D【点睛】本题主要考查了函数单调性的应用,以及不等式的有解问题,其中解答中合理把不等式的有解问题转化为函数的单调性与最值问题是解答的关键,着重考查分析问题和解答问题的能力,属于中档试题5、D【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.6、C【解析】将圆的方程化为标准方程即可得圆的半径.【详解】由圆x2+y2+2x﹣4y+1=0化为标准方程有:,所以圆的半径为2.故选:C【点睛】本题考查圆的一般方程与标准方程的互化,并由此得出圆的半径大小,属于基础题.7、D【解析】利用同角三角函数的基本关系,二倍角的余弦公式把要求的式子化为,把已知条件代入运算,求得结果.【详解】,,故选D.【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于中档题.8、B【解析】分析一次函数的单调性,可判断AD选项,然后由指数函数的单调性求得的范围,结合直线与轴的交点与点的位置关系可得出合适的选项.【详解】因为一次函数为直线,且函数单调递增,排除AD选项.对于B选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的上方,合乎题意;对于C选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的下方,不合乎题意.故选:B.9、C【解析】由分段函数,选择计算.【详解】由题意可得.故选:C.【点睛】本题考查分段函数的求值,属于简单题.10、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以当时,可得对任意的恒成立,则,即,所以;当时,对恒成立,即恒成立,又当时,,当且仅当即时等号成立,所以,综上所述,实数的取值范围是.故答案为:.12、##【解析】化简已知条件,求得,通过两边平方的方法求得,进而求得.【详解】依题意,①,,,化简得①,则,由,得,,.故答案为:13、【解析】连接AC交BD于O点,设交面于点E,连接OE,则角CEO就是所求的线面角,因为AC垂直于BD,AC垂直于,故AC垂直于面.设正方体的边长为2,则OC=,OE=1,CE,此时正弦值为故答案为.点睛:求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;高二时还会学到空间向量法,可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是要么定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,要么建系来做.14、【解析】因为集合,,所以,故答案为.15、【解析】由题意可知幂函数中为负数且为奇数,从而可求出解析式【详解】因为幂函数是奇函数且在上是减函数,所以为负数且为奇数,所以f(x)的一个表达式可以是(答案不唯一),故答案为:(答案不唯一)16、{|且}【解析】根据函数,由求解.【详解】因为函数,所以,解得,所以函数的定义域是{|且},故答案为:{|且}三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由题意可知实数的取值范围为函数的值域,结合三角函数的范围和二次函数的性质可知时函数取得最小值,当时函数取得最大值,实数的取值范围是.(2)由题意可得时函数取得最大值,当时函数取得最小值,原问题等价于,求解不等式组可得实数的取值范围是.试题解析:(1)因为,可化得,若方程有解只需实数的取值范围为函数的值域,而,又因为,当时函数取得最小值,当时函数取得最大值,故实数的取值范围是.(2)由,当时函数取得最大值,当时函数取得最小值,故对一切恒成立只需,解得,所以实数的取值范围是.点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.18、(1)(2)单调减函数,证明见解析【解析】(1)设,则,根据是偶函数,可知,然后分两段写出函数解析式即可;(2)利用函数单调性的定义,即可判断函数的单调性,并可证明结果【小问1详解】解:设,则,,因为函数为偶函数,所以,即,所以【小问2详解】解:设,,∵,∴,,∴,∴在为单调减函数19、(1)3(2)【解析】(1)利用求得.(2)结合指数函数的单调性求得实数的取值范围.【小问1详解】依题意且,【小问2详解】在R上是增函数且所求的取值范围是20、(1);(2)0.8小时.【解析】(1)时,设,由最高点求出,再依据最高点求出参数,从而得函数解析式;(2)解不等式可得结论【详解】解:(1)依题意,当时,可设,且,解得又由,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年:员工因病住院公司能否解除劳动合同
- 《电力系统自动化》课件
- 《机械原理与应用》课件
- 机械制造技术基础新第2章课件
- 2025合同转让合同纠纷如何解决
- 出租车司机雇佣合同(2篇)
- 2025年的常年法律顾问合同示范文本
- 尽心尽力备战国际金融理财师考试的心理素质试题及答案
- 全面可视化管理手册
- 2024年09月江苏南京市浦口区卫健委所属事业单位招聘高层次人才11人笔试历年专业考点(难、易错点)附带答案详解
- 实验一-混凝实验
- 静脉血栓栓塞症预防性抗凝治疗知情同意书
- 古诗词诵读《书愤》公开课一等奖创新教学设计统编版高中语文选择性必修下册
- 食堂从业人员绩效管理考核专项方案
- 幼儿园游戏活动评价
- (正式版)SHT 3075-2024 石油化工钢制压力容器材料选用规范
- 机器人发展史课件完整版
- 《城市市政管网运行安全风险评估规程》
- 2024年中国诗词大会知识竞赛模拟题库及答案(120题)
- 新车入户代办委托书
- 可乐罐罐身主要成分的探究
评论
0/150
提交评论