2025届北京市第十九中高二上数学期末学业水平测试模拟试题含解析_第1页
2025届北京市第十九中高二上数学期末学业水平测试模拟试题含解析_第2页
2025届北京市第十九中高二上数学期末学业水平测试模拟试题含解析_第3页
2025届北京市第十九中高二上数学期末学业水平测试模拟试题含解析_第4页
2025届北京市第十九中高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市第十九中高二上数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在三棱柱中,E,F分别是BC,中点,,则()A.B.C.D.2.以下命题是真命题的是()A.方差和标准差都是刻画样本数据分散程度的统计量B.若m为数据(i=1,2,3,····,2021)的中位数,则C.回归直线可能不经过样本点的中心D.若“”为假命题,则均为假命题3.设等差数列的前n项和为,且,则()A.64 B.72C.80 D.1444.已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为A.-=1 B.-=1C.-=1 D.-=15.已知a、b是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若a∥α,a∥b,则b∥α B.若a∥α,a∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥β D.若a⊥α,b⊥α,则a∥b6.数列,则是这个数列的第()A.项 B.项C.项 D.项7.等差数列中,已知,则()A.36 B.27C.18 D.98.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆的内接四边形是矩形9.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的体积为()A. B.C. D.10.在数列中,,,则()A.985 B.1035C.2020 D.207011.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A B.C. D.612.已知数列满足,(且),若恒成立,则M的最小值是()A.2 B.C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.若圆C的方程为,点P是圆C上的动点,点O为坐标原点,则的最大值为______14.已知长方体中,,,则点到平面的距离为______15.若将抛掷一枚硬币所出现的结果“正面(朝上)”与“反面(朝上)”,分别记为H、T,相应的抛掷两枚硬币的样本空间为,则与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间的子集为______16.若圆平分圆的周长,则直线被圆所截得的弦长为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的左右焦为,,点是该椭圆上任意一点,当轴时,,(1)求椭圆C的标准方程;(2)记,求实数m的最大值18.(12分)已知函数,当时,有极大值3(1)求的值;(2)求函数的极小值19.(12分)已知动点到点的距离与点到直线的距离相等.(1)求动点的轨迹方程;(2)若过点且斜率为的直线与动点的轨迹交于、两点,求三角形AOB的面积.20.(12分)已知,C是圆B:(B是圆心)上一动点,线段AC的垂直平分线交BC于点P(1)求动点P的轨迹的方程;(2)设E,F为与x轴的两交点,Q是直线上动点,直线QE,QF分别交于M,N两点,求证:直线MN过定点21.(12分)已知椭圆C:的左右焦点分别为,,点P是椭圆C上位于第二象限的任一点,直线l是的外角平分线,过左焦点作l的垂线,垂足为N,延长交直线于点M,(其中O为坐标原点),椭圆C的离心率为(1)求椭圆C的标准方程;(2)过右焦点的直线交椭圆C于A,B两点,点T在线段AB上,且,点B关于原点的对称点为R,求面积的取值范围.22.(10分)已知函数(1)求的图象在点处的切线方程;(2)求在上的最大值与最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据空间向量线性运算的几何意义进行求解即可.【详解】,故选:D2、A【解析】A:根据方差和标准差的定义进行判断;B:根据中位数的定义判断;C:根据回归直线必过样本中心点进行判断;D:根据“且”命题真假关系进行判断.【详解】对于A,方差和标准差都是刻画样本数据分散程度的统计量,故A正确;对于B,若为数据,2,3,,的中位数,需先将数据从小到大排列,此时数据里面之间的数顺序可能发生变化,则为排序后的第1010个数据的值,这个数不一定是原来的,故B错误;对于C,回归直线一定经过样本点的中心,,故C错误;对于D,若“”为假命题,则、中至少有一个是假命题,故D错误;故选:A3、B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.4、A【解析】由题意得,双曲线的焦距为,即,又双曲线的渐近线方程为,点在的渐近线上,所以,联立方程组可得,所以双曲线的方程为考点:双曲线的标准方程及简单的几何性质5、D【解析】根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能相交,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选:D.6、A【解析】根据数列的规律,求出通项公式,进而求出是这个数列的第几项【详解】数列为,故通项公式为,是这个数列的第项.故选:A.7、B【解析】直接利用等差数列的求和公式及等差数列的性质求解.【详解】解:由题得.故选:B8、B【解析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.9、D【解析】设圆锥的半径为,母线长,根据已知条件求出、的值,可求得该圆锥的高,利用锥体的体积公式可求得结果.【详解】设圆锥的半径为,母线长,因为侧面展开图是一个半圆,则,即,又圆锥的表面积为,则,解得,,则圆锥的高,所以圆锥的体积,故选:D.10、A【解析】根据累加法得,,进而得.【详解】解:因为所以,当时,,,……,,所以,将以上式子相加得,所以,,.当时,,满足;所以,.所以.故选:A11、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.12、C【解析】根据,(且),利用累加法求得,再根据恒成立求解.【详解】因为数列满足,,(且)所以,,,,因为恒成立,所以,则M的最小值是,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据点与圆的位置关系求得正确答案.【详解】圆的方程可化为,所以圆心为,半径.由于,所以原点在圆外,所以最大值为.故答案为:14、##2.4【解析】过作于,可证即为点到平面的距离.【详解】过作于,∵是长方体,∴平面平面,又∵平面平面,∴平面,设点到平面的距离为,∵∥平面,∴根据等面积法得,故答案为:.15、,,,【解析】先写出与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间,再写出其全部子集即可.【详解】与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间为,此空间的子集为,,,故答案为:,,,16、6【解析】根据两圆的公共弦过圆的圆心即可获解【详解】两圆相减得公共弦所在的直线方程为由题知两圆的公共弦过圆的圆心,所以即,又,所以到直线的距离所以直线被圆所截得的弦长为故答案为:6三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用椭圆的定义及勾股定理可求解;(2)问题转化为在轴截距的问题,临界条件为直线与椭圆相切,求解即可.【小问1详解】因为,,所以,∴,所以椭圆标准方程为:【小问2详解】要求的最值,即求直线在轴截距的最值,可知当直线与椭圆相切时,m取得最值.联立方程:,整理得,解得所以实数m的最大值为18、(1);(2)0【解析】(1)由题意得,则可得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的极小值.【详解】(1),当时,有极大值3,所以,解得,经检验,满足题意,所以;(2)由(1)得,则,令,得或,列表得极小值极大值易知是函数的极小值点,所以当时,函数有极小值0【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的极值,考查了学生对极值概念的理解与运算求解能力.19、(1)(2)【解析】小问1:由抛物线的定义可求得动点的轨迹方程;小问2:可知直线的方程为,设点、,将直线的方程与抛物线的方程联立,求出的值,利用抛物线的定义可求得的值,结合面积公式即可求解小问1详解】由题意点的轨迹是以为焦点,直线为准线的抛物线,所以,则,所以动点的轨迹方程是.【小问2详解】由已知直线的方程是,设、,由得,,所以,则,故,20、(1)(2)证明见解析【解析】(1)根据,利用椭圆的定义求解;(2)(解法1)设,得到,的方程,与椭圆方程联立,求得M,N的坐标,写出直线的方程求解;(解法2)上同解法1,由对称性分析知动直线MN所过定点一定在x轴上,设所求定点为,由C,D,T三点共线,然后由求解;(解法3)设,由,,设:,:,其中,与椭圆方程联立,整理得,由F,M,N三点的横坐标为该方程的三个根,得到:求解.【小问1详解】解:由题知,则,由椭圆的定义知动点P的轨迹为以A,B为焦点,6为长轴长的椭圆,所以轨迹的方程为【小问2详解】(解法1)易知E,F为椭圆的长轴两端点,不妨设,,设,则,,于是:,:,联立得,解得或,易得,同理当,即时,:;当时,有,于是:,即综上直线MN过定点(解法2)上同解法1,得,,由对称性分析知动直线MN所过定点一定在x轴上,设所求定点为,由C,D,T三点共线,得,即,于是,整理得,由t的任意性知,即,所以直线MN过定点(解法3)设,则,,当时,直线MN即为x轴;当时,因为,所以,则,设:,:,其中,联立,得,整理得,易知F,M,N三点的横坐标为该方程的三个根,所以:,由及的任意性,知直线MN过定点21、(1)(2)【解析】(1)根据题意可得到的值,结合椭圆的离心率,即可求得b,求得答案;(2)由可得,进一步推得,于是设直线方程和椭圆方程联立,利用根与系数的关系,求得弦长,表示出三角形AOB的面积,利用换元法结合二次函数的性质求其范围.【小问1详解】由题意可知:为的中点,为的中点,为的中位线,,,又,故,即,,又,,,椭圆的标准方程为;【小问2详解】由题意可知,,,①当过的直线与轴垂直时,,,②当过的直线不与轴垂直时,可设,,直线方程为,联立,可得:.,,,由弦长公式可知,到距离为,故,令,则原式变为,令,原式变为当时,故,由①②可知.【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论