![2024人工智能就绪度分析报告:向标准化就绪框架迈进(英文版)ITU国际电信联盟_第1页](http://file4.renrendoc.com/view8/M01/39/35/wKhkGWcXgoKAeg5zAAGarn64LOg303.jpg)
![2024人工智能就绪度分析报告:向标准化就绪框架迈进(英文版)ITU国际电信联盟_第2页](http://file4.renrendoc.com/view8/M01/39/35/wKhkGWcXgoKAeg5zAAGarn64LOg3032.jpg)
![2024人工智能就绪度分析报告:向标准化就绪框架迈进(英文版)ITU国际电信联盟_第3页](http://file4.renrendoc.com/view8/M01/39/35/wKhkGWcXgoKAeg5zAAGarn64LOg3033.jpg)
![2024人工智能就绪度分析报告:向标准化就绪框架迈进(英文版)ITU国际电信联盟_第4页](http://file4.renrendoc.com/view8/M01/39/35/wKhkGWcXgoKAeg5zAAGarn64LOg3034.jpg)
![2024人工智能就绪度分析报告:向标准化就绪框架迈进(英文版)ITU国际电信联盟_第5页](http://file4.renrendoc.com/view8/M01/39/35/wKhkGWcXgoKAeg5zAAGarn64LOg3035.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ITUPublicationsInternationalTelecommunicationUnion
TelecommunicationStandardizationSector
AIReady–AnalysisTowardsaStandardizedReadiness
Framework
Version1.0
September2024
ITU
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Version1.0
September2024
ITU
Disclaimers
Thedesignationsemployedandthepresentationofthematerialinthispublicationdonotimply
theexpressionofanyopinionwhatsoeveronthepartoftheInternationalTelecommunicationUnion(ITU)oroftheITUsecretariatconcerningthelegalstatusofanycountry,territory,city,orareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.
Thementionofspecificcompaniesorofcertainmanufacturers’productsdoesnotimplythattheyareendorsedorrecommendedbyITUinpreferencetoothersofasimilarnaturethatarenotmentioned.Errorsandomissionsexcepted;thenamesofproprietaryproductsaredistinguishedbyinitialcapitalletters.
AllreasonableprecautionshavebeentakenbyITUtoverifytheinformationcontainedinthispublication.However,thepublishedmaterialisbeingdistributedwithoutwarrantyofanykind,eitherexpressedorimplied.Theresponsibilityfortheinterpretationanduseofthemateriallieswiththereader.
Theopinions,findingsandconclusionsexpressedinthispublicationdonotnecessarilyreflecttheviewsofITUoritsmembership.
ISBN
978-92-61-39131-7(Electronicversion)978-92-61-39141-6(EPUBversion)
978-92-61-39151-5(Mobiversion)
Pleaseconsidertheenvironmentbeforeprintingthisreport.
©ITU2024
Somerightsreserved.ThisworkislicensedtothepublicthroughaCreativeCommonsAttribution-Non-Commercial-ShareAlike3.0IGOlicense(CCBY-NC-SA3.0IGO).
Underthetermsofthislicence,youmaycopy,redistributeandadapttheworkfornon-commercialpurposes,providedtheworkisappropriatelycited.Inanyuseofthiswork,thereshouldbenosuggestionthatITUendorseanyspecificorganization,productsorservices.TheunauthorizeduseoftheITUnamesorlogosisnotpermitted.Ifyouadaptthework,thenyoumustlicenseyourworkunderthesameorequivalentCreativeCommonslicence.Ifyoucreateatranslationofthiswork,youshouldaddthefollowingdisclaimeralongwiththesuggestedcitation:“ThistranslationwasnotcreatedbytheInternationalTelecommunicationUnion(ITU).ITUisnotresponsibleforthecontentoraccuracyofthistranslation.TheoriginalEnglisheditionshallbethebindingandauthenticedition”.Formoreinformation,pleasevisit
/
licenses/by-nc-sa/3.0/igo/
Tableofcontents
Acronyms
v
1ExecutiveSummary
1
2Introduction
4
3CaseStudies
7
3.1CaseStudy-1:IoT-basedEnvironmentMonitoringBasedon
StandardIndices
7
3.2CaseStudy-2:AI-basedFrontendwithMultimodalBackendData
Aggregation
8
3.3CaseStudy-3:CollaborativeMulti-agentSystems
9
3.4CaseStudy-4:EmpoweringLocalCommunities
12
3.5CaseStudy-5:RegionalCustomizations
14
4UseCaseAnalysis
16
4.1UseCaseSummaries
16
4.2TrafficSafety
17
4.3SmartAgriculture
18
4.4HealthCare
21
4.5PublicServices
22
4.6DisasterPrevention
24
4.7Climate,CleanEnergy
25
4.8FutureNetworksandTelecommunications
26
4.9Accessibility
26
5DataAnalyticsStrategy
29
6Futureworkandconclusion
33
7Reference
34
AppendixA:DetailedanalysisoftheusecasesandAIimpactsontheusecases
41
AppendixB:SpecificimpactsofthesecharacteristicsonStandardsFrameworks
forAIreadinessrequirefurtherstudy
51
iii
Listoffiguresandtables
Figures
Figure1:ITUAIforGoodInfinityFrameworkforAIReadiness
2
Figure2:InstancesofReadinessFactorsinCaseStudy-1
8
Figure3:InstancesofReadinessFactorsinCaseStudy-2
9
Figure4:InstancesofReadinessFactorsinCaseStudy-3
11
Figure5:InstancesofReadinessFactorsinCaseStudy-4
13
Figure6:InstancesofReadinessFactorsinCaseStudy-5
15
Tables
Table1:CharacteristicsoftheAIReadinessfactors
29
Table2:GeneralusecaseanalysisandAIimpacts
41
Table3:Analysisofusecasescenarios
51
iv
Acronyms
ADAS
AdvancedDrivingAssistanceSystem
AEB
AutonomousEmergencyBraking
AI
ArtificialIntelligence
AIML
ArtificialIntelligenceandMachineLearning
API
ApplicationProgrammerInterfaces
ASEAN
AssociationofSoutheastAsianNations
ASR
AutomaticSpeechRecognition
CBAM
ConvolutionalBlockAttentionMechanism
CCTV
ClosedCircuitTelevision
CfE
CallforEngagement
DC
DroughtCode
DMC
DuffMoistureCode
DSRC
DedicatedShort-RangeCommunication
DUI
DrivingunderIntoxication
FDRS
FireDangerRatingSystem
FWI
FireWeatherIndex
GPS
GlobalPositioningSystem
GPU
GraphicsProcessingUnit
GWL
GroundwaterLevel
IASRI
IndianAgriculturalStatisticsResearchInstitute
IISS
IndianInstituteofSoilScience
IMD
IndianMeteorologicalDepartment
IoT
InternetofThings
KPI
KeyPerformanceIndicator
LSTM
LongShortTermModel
MARS
MultivariateAdaptiveRegressionSpline
METMalaysia
MalaysianMeteorologicalDepartment
MQTT
MessageQueuingTelemetryTransport
v
(continued)
NBSS&LUP
NationalBureauofSoilSurveyandLandUsePlanning
NLP
NaturalLanguageProcessing
NPK
Nitrogen,Phosphorus,Potassium
RAG
RetrievalAugmentedGeneration
RF
RandomForest
RL
ReinforceLearning
RMFR
RajaMusaForestReserve
RSU
RoadsideUnits
SAE
SocietyofAutomotiveEngineer
SDG
SustainableDevelopmentGoal
SDK
SoftwareDevelopmentKit
SDO
StandardsDevelopingOrganization
SRC
SourceofData
TCP/IP
TransmissionControlProtocol/InternetProtocol
TTS
Text-to-Speech
UAV
UnmannedAerialVehicle
vi
AIReady–AnalysisTowardsaStandardizedReadinessFramework
1ExecutiveSummary
ThisreportprovidesananalysisoftheArtificialIntelligence(AI)ReadinessstudyaimedatdevelopingaframeworkforassessingAIReadinesswhichindicatestheabilitytoreapthebenefitsofAIintegration.Bystudyingtheactorsandcharacteristicsindifferentdomains,abottom-upapproachisfollowedwhichallowsustofindcommonpatterns,metrics,andevaluationmechanismsfortheintegrationofAIinthesedomains.
TheanalysisofcharacteristicsofusecasesledustothemainAIreadinessfactors:
1)Availabilityofopendata
Theavailabilityofdataiscrucialintraining,modeling,andapplicationsofAIirrespectiveofthedomain.Dataavailabilityforanalysismaybeprivateorpublic.Metadataforprivatedatamaybepublished(e.g.datatypesandstructures).However,publicdata,openforanalysisbyanyone,requirescleaningandanonymizationtoremoveconfidentialorpersonalinformation.
2)AccesstoResearch
Balancingthetwomainaspectsofresearch,namelyadvancementsindomain-specificresearchandadvancementsinAIresearchrequirescollaborationbetweendomainexpertsandAIresearchers.Providingaplatformforcollaborationwithexpertsfromdifferentrealmsofknowledge,facilitatingcooperation,andexchangeofinformationamongthemiskeytocreatingasustainableecosystemforAI-basedinnovation.
3)DeploymentcapabilityalongwithInfrastructure
Twomajorcategoriesofinfrastructurearestudied–physicalinfrastructureandcommunicationinfrastructure.Consideringthecontextoftransportationsafety,examplesofphysicalinfrastructurearespeedbarriersandotherregulatorymechanismsforspeedcontrol(seeclause4.2.4).Otherexamplesaregreenhouses,moisturizers(seeclause4.3.6),andsensorsthatprovideanappropriateenvironmentandmonitorplantsinagriculturalusecases.PhysicalinfrastructureelementsplayanimportantroleintheintegrationandapplicationofAIindatacollection,aggregation-attheedgeorcore,training–federatedorcentralized,andintheapplicationofArtificialIntelligenceandMachineLearning(AI/ML)inferenceusingactuators.
Inaddition,thereisbackendinfrastructure,suchascomputeavailability,storageavailability,fiber/wirelessavailabilityforthelastmile,andhigh-speedwideareanetworkcapabilities,whichwoulddemocratizeAI/MLsolutionsandcreatescalabilityforinnovations.
4)Stakeholdersbuy-inenabledbyStandards–trust,interoperability,security
Interoperabilityandcompliancewithstandardsbuildtrust.SecurestandardsleadtoAIReadiness,asglobalparticipationandconsensusdecidewhetherpre-standardresearchcouldbeadoptedintotherealworld.Vendorecosystems,includingopensource,arediverseindifferentdomainsofusecases.Goingbacktotransportationusecases,forexample,pedestriansafetyanddriversafetyareimportantconsiderations.AdoptionofAI-basedsolutionsthatinvolvehumanssuchaspedestriansanddriversrequiretheirtrustandperceptionofusingAI-basedsolutions.
5)DeveloperEcosystemcreatedviaOpensource
Anenergizedthird-partydeveloperecosystemnotonlyfast-tracksadoptionbutalsoenablesrevenuegeneration.
1
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Developerecosystembootstrapsreferenceimplementationsofalgorithms,withbaselineandopen-sourcetoolsets.Third-partyapplications,ApplicationProgrammerInterfaces(API),andSoftwareDevelopmentKits(SDK)alongwithcrowd-sourcedsolutionsincreasethegeneralizabilityofAI/MLsolutionsacrossregionsanddomainsviatransferlearning.Hardwareimplementations,especiallyopen-sourceIoTboardsareevolvingtohosttheedgedataprocessing.ReferencenetworkimplementationsprovidedviaSG20[95]referenceismaturingtothelevelofwide-scaledeployments.IoTgatewayssuchasLoRagateway,SDKs,andAPIsenablethecreationanddeploymentofnewandinnovativeapplicationsthatenableSustainableDevelopmentGoals.
6)DatacollectionandmodelvalidationviaSandboxpilotexperimentalsetups
Manyusecasesrequireanexperimentalsandbox,createexperimentalsolutions,andvalidatethemusingexperimentalsetups.Whilereal-worlddatawouldimplyamorereliablesourceofdataandarealistictestingenvironment,notallscenarioscouldbeencounteredintherealworld,especiallywhencatastrophiceventsandrelateddataarerare.
Figure1capturestheabovereadinessfactorsintotheITUAIforGoodInfinityFrameworkforAIReadiness.
Figure1:ITUAIforGoodInfinityFrameworkforAIReadiness
Thisreportcapturesfivecasestudiesinclause3,whichbringfocustospecificaspectsorimpactsofthereadinessfactors.Themappingofreadinessfactorsisrepresentedinfigureswhichcalloutthespecificreadinessfactorswhichappliestothatcasestudy.Thecasestudiesinvolvemultipleusecases.Thisreportcovers30usecasesfromvariousdomains.Eachusecasemayinturnhavedifferentusecasescenarios.Clause4hasasummaryofusecasesalongwithacluster-wisedescriptionoftheusecases.Table1inClause5describesthequantifiablecharacteristicsrelatedtoeachreadinessfactor.Thesearederivedfromthe“DetailedanalysisoftheusecasesandAIimpactsontheusecases”inrelationtoAppendixAand“SpecificimpactsofthecharacteristicsofusecasesonStandardsFrameworksforAIreadinessrequirefurtherstudy”describedinAppendixB.
2
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Thereportaudienceare:
(1)The“providers”areentitiesthatsupplyreadinessfactorssuchasdata,code,models,toolsets,andtraining.Theseproviders,whichcanbepublicorprivate,mightalsocontributetostandards.Theymayactassourcesordownstreamcollatorsofthesefactors.Examplesincludedomainexpertswhocollectandanalyzedatatocreatemodels,aswellastoolsetvendors,includingthoseofferingopen-sourcesolutions.Thereportaimstohelpprovidersidentifygapsinthesefactorsandtheirassociatedcharacteristics.
(2)The“users”areentitiesthatdeployorbenefitfromthereadinessfactors.Theyincludedecisionmakerswhoneedtodeterminewhichproviderwillofferthemaximumbenefit.Examplesofusersaregovernments,regulators,andotherentitieswithinspecificdomains.
Futurestepsandconclusionsaredescribedinclause6,mainlythreestepsareproposed(1)anopenrepositoryofdatawouldbesetuptoaddressthecorrespondingAIreadinessfactorfortheavailabilityofopendata,(2)thecreationofanexperimentationSandboxwithpre-populatedstandardcomplianttoolsetsandsimulatorsstudyingtheimpactofthereadinessfactorsand(3)derivationofopenmetricsandopensourcereferencetoolsetsformeasurementandvalidationofAIreadiness.Inaddition,aPilotAIReadinessPlugfestisplannedtogiveanopportunitytoexplaintheAIReadinessfactorstovariousstakeholdersandallowthemto“plugin”variousregionalfactorssuchasdata,models,standards,toolsets,andtraining.
TheresultsoftheplugfestalongwiththenextversionofthisreportwillbereleasedattheAIforGoodSummit2025.
Acknowledgment
WeacknowledgethesupportandareverygratefulfortheencouragementprovidedbytheKingdomofSaudiArabiaduringthisproject.
WeacknowledgealsotheworkdonebyITUFocusGrouponArtificialIntelligence(AI)andInternetofThings(IoT)forDigitalAgriculture(FG-AI4A)[96]andtheusecasespublishedbyITUAIforGoodInnovateforImpactstudy[70].
WealsoacknowledgetheeffortsoftheUNInteragencyWorkingGrouponAI,co-chairedbyITUandUNESCO,infacilitatingcoordinationwithotherUNagenciesthathavecomplementaryinitiatives.
3
AIReady–AnalysisTowardsaStandardizedReadinessFramework
2Introduction
Inthiscross-domainstudy,weanalyzedusecasesrelatedtotheuseofAIindifferentverticalssuchastrafficsafety,health,agriculture,disastermanagement,accessibility,publicservices,etcwithanaimtofindpatternsinapplicationsofAIindifferentscenarios.ThegoalwastoderiveastandardizeddataanalysismethodandmetricthatcouldbeappliedtomeasurethereadinesstouseAIforsolvingrelevantproblemsintheseusecases.OuranalysisoftheusecasesincludedthefollowingcharacteristicsofusecasestobeconsideredwhileevaluatingAIreadiness:Thedatausedineachusecase,domain-specificresearchneededintheusecase,deploymentwithinfrastructurerequirements,humanfactorssupportedbystandards,experimentationcapabilityviaasandbox,andecosystemcreationusingopensource.Thesecharacteristicsareanalyzedin“Table2–GeneralusecaseanalysisandAIimpacts”inAppendixA.
ThemainAIreadinessfactorsidentifiedinthisreportare:
1)Availabilityofopendata
TheKingdomofSaudiArabiasetupanOpenDataPlatform[3]providingdatasetstothepublictoenhanceaccesstoinformation,collaboration,andinnovation.ThemajorareasofdatasetavailabilityinthisopendataplatformareHealth,AgricultureandFishing,EducationandTraining,SocialServices,andTransportandCommunications.Thetransportationsysteminthemajorcitiesenablesadvancedusecasessuchastrackingvehicleswithexcessivespeedtoguaranteepedestriansafety,providingthebestdrivingroutestoreducethenumberoftrafficjams,andreducingthemortalityratecausedbycollision.TheseusecasesutilizediversedatasuchasimagerydatacollectedbyClosedcircuittelevision(CCTV),adetailedmapofthecity,trafficsignalinformation,andvehicleGlobalPositioningSystem(GPS)details.Thisisaprimeexampleofthecollectionandhostingofopendataandenablinganalyticsfortrafficsafety[28][19][44].
Opendataenablesprivateentrepreneurs,startups,andindustriestodevelopapplicationsordesignalgorithmstoachieveSustainableDevelopmentGoals(SDGs)suchassafetransportation.However,therearestillchallengesindatacollection,cleaning,andpreprocessingwhichhindertheopeningofdataforeveryone.Awell-designedopendatastrategywouldmakesurehigh-qualitydataisavailableforscholars,developers,andanalyststodesignsolutionsbasedonreal-worldproblems,thusenhancingtheimpactofAIonsociety.
2)AccesstoResearch
Theequalimportanceofdomain-specificresearchandtheapplicationofadvancedAImodelsinpredictingwithaccuracyisbroughtoutbyexamplessuchaspredictingintoxicationlevelsandmodelingsafedriving.Analysisofbiologicalandmedicaldatausingdomain-specific,andAI-specificresearchisimportantfortheusecase[8][10].
Forexample,whileassessingthesafedrivingbehaviorsundertheinfluence(seeClause4.2.2),notonlymonitoringofdriverbehaviorwasconsidered,butevenbiologicaldatasuchaschestmovementandbreathwerecollected.Chestmovementwascollected,andanalyzed,andthepredictedheartbeatwouldserveasreferencedataformappingthebloodalcohollevel.
Aprimeexampleofacollaborativeinitiativeisthe“AIforRoadSafety"[4]launchedbyITU,theUNSecretary-General'sSpecialEnvoyforRoadSafety,andtheUNEnvoyonTechnology.ThisinitiativepromotesanAI-enhanced“safesystem"approachtoreducefatalitiesbasedon
4
AIReady–AnalysisTowardsaStandardizedReadinessFramework
sixpillars:roadsafetymanagement,saferroadsandmobility,safervehicles,saferroadusers,post-crashresponse,andspeedcontrol.
GlobalinitiativessuchasCollaborationonIntelligentTransportationSystems(CITS)[9]intendtoprovideagloballyrecognizedforumforthecoordinationofaninternationallyaccepted,globallyharmonizedsetofIntelligentTransportationSystems(ITS)communicationstandards.
GlobalInitiativessuchasCITSallowcommunitiestoaccesscollaborativeresearchonadvancedtechnologiesrelatedtospecificusecases.
3)DeploymentcapabilityalongwithInfrastructure
NetworksinterconnectvariousnodesintheAI/MLpipeline[ITU-TY.3172]suchasthesourceofdata,pre-processing,model,anddistributionofinference.Forinstance,inagricultureusecases(seeclauses4.3.2and4.3.3)soilsensorsorwatersensorsshouldbedeployedinthefieldwithhighqualityandnumberssothatthevolumeandvarietyofdataaresufficienttotrainmodelswithaccuracy.Diseasedetectionforwheatcropsdiscussedin[38]providesanexemplarystudy.Visualcamerasaredeployed30-50centimetres(abouthalfthelengthofabaseballbat)awayfromthecropandcoverallareasoftheplants.Giventhefield'slargesurface,suchinfrastructuredeploymentcapabilityislinkedtothesolution'soverallcost.Softinfrastructuresuchashostedalgorithms,GraphicsProcessingUnit(GPU)computeplatforms,andnetworkprotocolstacksprovidebackendcomputingandcommunications.
Thesepracticaldeploymentaspectssuchasnetworks,sensors,visualcameras,GPUandcompute,formtheinfrastructurerequirementsthataffecttheAIreadiness.
Apartfromlabsimulationsandexperimentations,real-worldpilotsanddeploymentsupportareneededtovalidateinnovativesolutions.PeatlandForestusecase[48]whichaimstopredictthepotentialfire,providesanexemplarstudywherethedesignedalgorithmcouldbeappliedandvalidatedintherealworld.TheLoRagatewaywasdeployedtodistributetheworkflowandensurealow-latencynetwork.Inthesoilmoisturetestingusecase(seeclause4.3.4),edgestoragewasappliedtospeeduptheprocessandsecuretheaccuracyofthesystem.IntheIoT-basedcropmonitoringusecase(seeclause4.3.5),edgedataisacquired.
Ingeneral,computationavailableattheedge,eitherprovidedusingpublic,open,orprivateinfrastructurewouldenableverticalapplicationstopoolandhosttime-criticalapplicationsclosertotheuser.Coordinationofsatellitedata[51]andtheadditionofgeospatialcapabilitiesandinfrastructurewouldcreatevalueandstimulatetheeconomyaroundgeospatialdata.Cloudhostingofopendata,availabilityofschemes,policiesinmachine-readableformat[49],openportals,andreal-timeupdatesfromagencies[50]includingvisualizationdashboardsandmobileappshelpsinbetterintegrationofAIinusecases.
4)Stakeholdersbuy-inenabledbyStandards
Interoperabilityamongdifferentsolutionprovidersbringsthechoiceofdifferentvendors,irrespectiveofopenorproprietarysolutions,tosuchprimaryactors.Standardsplayanimportantroleinensuringcomplianceandinteroperability.
Forexample,primaryactorsintheagriculturedomainarethefarmers[14][35]whotaketheinitiativeinadoptingInternetofThings(IoT)-basedsensorsfordatacollection,edgedevicesforanalytics,andlow-powercommunicationsystems,whichimpliesthattheirtrustandwillingnesstoonboardareimportant.
5
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Asanexample,anadvanceddrivingassistancesystem(seeclause4.2.3)involvesdifferentcarmanufacturerswithdifferentimplementationswhomightadoptdifferentparameters,thedivergenceinimplementationmightcreatelock-insituationsforuserspreventingflexibilityandchoiceofvendors.Additionally,issuesconcerningdataprivacy,dataprotection,andresponsibilitiesaretobestudiedcollaborativelyinopenstandardssuchasthosedevelopedbyITU,whichwillensuresecure,trustable,andinteroperableend-to-endsolutions.
5)DeveloperEcosystemcreatedviaOpensource
Cloud-hostedsolutionswithexposedAPIsforsubscribing/publishingdatafromportals[49]wouldcreatevaluefortheoverallindustryandleadtoinnovativeapplicationsthatsolvereal-worldproblemsusingAI/ML.Aprimeexampleisresearchsolutionsforsatellitedatausageinthefirepropagationmodel[51].
Referencesolutions,openmodels,andtoolsetscreatedinopensourcehelpinmobilizingresearchandinnovation,actingasabaselineforAIintegration,whichcouldbeextended,enhancedoroptimizedbasedonspecificusecaserequirements.SolutionspublishedasaresultofITUAI/MLChallengessuchastheTinyMLChallenge[66]aregoodexamplesofopen,published,anddeveloper-drivensolutions.
6)DatacollectionandmodelvalidationviaSandboxpilotexperimentalsetups
ITUdefinedMLSandboxin[ITU-TY.3172]anddescribedthedetailsofSandboxarchitecturesin[ITU-TY.3181].Inessence,Sandboxisanenvironmentinwhichmachinelearningmodelscanbetrainedandtheireffectstestedandevaluatedbeforedeployingintherealworld.Thishassinceseenwiderapplicationsinvarioususecases.
ImplementingcontinuousimprovementofmodelsusingfeedbackandoptimizationsintheSandboxhelpstooptimizeessentialtaskswithindisaster-strickenareas[52].Unmannedaerialvehicles(UAVs)canlearnandadjusttheiroperations(includingroutenavigation,returningtochargingstations,anddatadetectionandtransmission)basedonfeedbackfromtheenvironment.
Forexample,trafficregulationscenariosusingvisualcameras[36]andothersensorsuseAI/MLfeedbackloops,whichcollectdata,produceinferences,createactionrecommendationsandpolicyapplications,andaretestedandvalidatedusingpre-builttrafficplansforspecificoccasions.
PilotsetupsviaSandboxescanhelpinassimilatinglocalcommunitiesandutilitiesintothesolution.Forexample,in[51],firedetectionandpropagationmodelsaretestedandvalidated,andalarmsareusedtoprovideadvancedinformationtolocalcommunitiesandutilities.
6
AIReady–AnalysisTowardsaStandardizedReadinessFramework
3CaseStudies
Aspartofourstudiesonusecases,andourdetaileddiscussionswiththeusecaseauthors,wehaveselectedcertaincasestudieswhichbringoutthebenefits(orlackofit)forincreasing/measuringAIreadiness.EspeciallywefocusonthosecasestudiesthatutilizethereadinessfactorsmentionedinSection1above.Inaddition,welookforclearmetadata,supportingreferences,andpublishedresearchpapers,withexperimentationthatcanpracticallyshowcasethebenefitsofAIreadinessontheseterms.
Eachcasestudyismappedtothe6readinessfactorslistedinclause2aboveandtheinstancesofthereadinessfactorsareexplainedforeachcasestudy.
3.1CaseStudy-1:IoT-basedEnvironmentMonitoringBasedon
StandardIndices
Thiscasestudyinvolvesasetofusecaseswhichmonitorenvironmentparameterssuchassoilsensor,piezometers,andwaterlevelsensorsetc.andinferstandardizedindicesforspecificusecasese.g.groundwaterlevel(GWL)mappedtodroughtcodes(DC).Theareaofcoveragemaybequitelarge,forexample,multiplehectorsofforestland.Verificationofsenseddataandinferreddatawithgroundtruthincollaborationwithexpertsisanessentialcharacteristicofsuchusecases.Communicationnetworks,includingdataformatconversionsareimportantstandardrequirementsforsuchusecases.
Net-Peat-Zero[48]:NetworkedAssociationofSoutheastAsianNations(ASEAN)PeatlandForestforNet-ZerodeliveredbyUniversityPutraMalaysiaisanexcellentexampleofausecasewithreal-worlddeploymentanditsapplicationofopendata,whichisaccessibletoeveryone.
ThisusecasepresentsthepossibilitytoleverageAIinpredictingForestFireinpeatlandareasinSouthAsia.Animprovedtropicalpeatlandfireweatherindex(FWI)systemisproposed,bycombiningthegroundwaterlevel(GWL)withthedroughtcode(DC).Tomonitorthepeatland,aLoRa-basedIoTsystemisused,andsensorssuchassoilsensors,piezometersensors,waterlevelsensors,andweathersensorsareused,withtheexpectationthatintegralmeteorologicalinformationcouldbedetected.Allthedatamentionedabovecouldbecross-checkedwiththeonesusedbytheMalaysianMeteorologicalDepartment(METMalaysia),whichmeansthatthedatacollectedbytheIoTsystemisauthenticandreadytobeprocessed.
Inaddition,animprovedmodeltoapplytheGWLisproposedfortheFWIformulationintheFireDangerRatingSystem(FDRS).Specifically,DCisformulatedusingGWL,insteadoftemperatureandrainintheexistingmodel.FromtheGWLaggregatedfromtheIoTsystem,theparameterispredictedusingmachinelearningbasedonaneuralnetwork.TheresultsshowthattheDCcalculatedfromtheIoTsystemhasahighcorre
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子商城库存管理与仓储作业流程优化研究
- 2025年度支付合同中员工离职手续办理规范
- 2025年度智能化股权转让终止协议书范本
- 电子商务的消费者行为研究
- 转正申请书数据
- 2025年度新型建筑材料供应施工合同
- 2025年度新能源充电桩建设项目股权协议
- 二零二五年度压缩天然气槽车租赁与物流配送合同3篇
- 2025年度医疗器械研发资助合同文本
- 2025年度水库水面养殖权有偿转让与经营合同
- GB/T 45177-2024人工光型植物工厂光环境技术规范
- 2025年中考语文模拟试卷(含答案解析)
- 2024-2025年天津河西区七年级上学期期末道德与法治试题(含答案)
- 2025年个人学习领导讲话心得体会和工作措施例文(6篇)
- 2025大连机场招聘109人易考易错模拟试题(共500题)试卷后附参考答案
- 新HSK一至六级词汇表
- 现场快速反应跟踪管理看板
- 常见肿瘤AJCC分期手册第八版(中文版)
- 电气第一种第二种工作票讲解pptx课件
- 英国签证户口本翻译模板(共4页)
- 企业公司行政人事管理组织架构图带照片
评论
0/150
提交评论