




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ITUPublicationsInternationalTelecommunicationUnion
TelecommunicationStandardizationSector
AIReady–AnalysisTowardsaStandardizedReadiness
Framework
Version1.0
September2024
ITU
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Version1.0
September2024
ITU
Disclaimers
Thedesignationsemployedandthepresentationofthematerialinthispublicationdonotimply
theexpressionofanyopinionwhatsoeveronthepartoftheInternationalTelecommunicationUnion(ITU)oroftheITUsecretariatconcerningthelegalstatusofanycountry,territory,city,orareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.
Thementionofspecificcompaniesorofcertainmanufacturers’productsdoesnotimplythattheyareendorsedorrecommendedbyITUinpreferencetoothersofasimilarnaturethatarenotmentioned.Errorsandomissionsexcepted;thenamesofproprietaryproductsaredistinguishedbyinitialcapitalletters.
AllreasonableprecautionshavebeentakenbyITUtoverifytheinformationcontainedinthispublication.However,thepublishedmaterialisbeingdistributedwithoutwarrantyofanykind,eitherexpressedorimplied.Theresponsibilityfortheinterpretationanduseofthemateriallieswiththereader.
Theopinions,findingsandconclusionsexpressedinthispublicationdonotnecessarilyreflecttheviewsofITUoritsmembership.
ISBN
978-92-61-39131-7(Electronicversion)978-92-61-39141-6(EPUBversion)
978-92-61-39151-5(Mobiversion)
Pleaseconsidertheenvironmentbeforeprintingthisreport.
©ITU2024
Somerightsreserved.ThisworkislicensedtothepublicthroughaCreativeCommonsAttribution-Non-Commercial-ShareAlike3.0IGOlicense(CCBY-NC-SA3.0IGO).
Underthetermsofthislicence,youmaycopy,redistributeandadapttheworkfornon-commercialpurposes,providedtheworkisappropriatelycited.Inanyuseofthiswork,thereshouldbenosuggestionthatITUendorseanyspecificorganization,productsorservices.TheunauthorizeduseoftheITUnamesorlogosisnotpermitted.Ifyouadaptthework,thenyoumustlicenseyourworkunderthesameorequivalentCreativeCommonslicence.Ifyoucreateatranslationofthiswork,youshouldaddthefollowingdisclaimeralongwiththesuggestedcitation:“ThistranslationwasnotcreatedbytheInternationalTelecommunicationUnion(ITU).ITUisnotresponsibleforthecontentoraccuracyofthistranslation.TheoriginalEnglisheditionshallbethebindingandauthenticedition”.Formoreinformation,pleasevisit
/
licenses/by-nc-sa/3.0/igo/
Tableofcontents
Acronyms
v
1ExecutiveSummary
1
2Introduction
4
3CaseStudies
7
3.1CaseStudy-1:IoT-basedEnvironmentMonitoringBasedon
StandardIndices
7
3.2CaseStudy-2:AI-basedFrontendwithMultimodalBackendData
Aggregation
8
3.3CaseStudy-3:CollaborativeMulti-agentSystems
9
3.4CaseStudy-4:EmpoweringLocalCommunities
12
3.5CaseStudy-5:RegionalCustomizations
14
4UseCaseAnalysis
16
4.1UseCaseSummaries
16
4.2TrafficSafety
17
4.3SmartAgriculture
18
4.4HealthCare
21
4.5PublicServices
22
4.6DisasterPrevention
24
4.7Climate,CleanEnergy
25
4.8FutureNetworksandTelecommunications
26
4.9Accessibility
26
5DataAnalyticsStrategy
29
6Futureworkandconclusion
33
7Reference
34
AppendixA:DetailedanalysisoftheusecasesandAIimpactsontheusecases
41
AppendixB:SpecificimpactsofthesecharacteristicsonStandardsFrameworks
forAIreadinessrequirefurtherstudy
51
iii
Listoffiguresandtables
Figures
Figure1:ITUAIforGoodInfinityFrameworkforAIReadiness
2
Figure2:InstancesofReadinessFactorsinCaseStudy-1
8
Figure3:InstancesofReadinessFactorsinCaseStudy-2
9
Figure4:InstancesofReadinessFactorsinCaseStudy-3
11
Figure5:InstancesofReadinessFactorsinCaseStudy-4
13
Figure6:InstancesofReadinessFactorsinCaseStudy-5
15
Tables
Table1:CharacteristicsoftheAIReadinessfactors
29
Table2:GeneralusecaseanalysisandAIimpacts
41
Table3:Analysisofusecasescenarios
51
iv
Acronyms
ADAS
AdvancedDrivingAssistanceSystem
AEB
AutonomousEmergencyBraking
AI
ArtificialIntelligence
AIML
ArtificialIntelligenceandMachineLearning
API
ApplicationProgrammerInterfaces
ASEAN
AssociationofSoutheastAsianNations
ASR
AutomaticSpeechRecognition
CBAM
ConvolutionalBlockAttentionMechanism
CCTV
ClosedCircuitTelevision
CfE
CallforEngagement
DC
DroughtCode
DMC
DuffMoistureCode
DSRC
DedicatedShort-RangeCommunication
DUI
DrivingunderIntoxication
FDRS
FireDangerRatingSystem
FWI
FireWeatherIndex
GPS
GlobalPositioningSystem
GPU
GraphicsProcessingUnit
GWL
GroundwaterLevel
IASRI
IndianAgriculturalStatisticsResearchInstitute
IISS
IndianInstituteofSoilScience
IMD
IndianMeteorologicalDepartment
IoT
InternetofThings
KPI
KeyPerformanceIndicator
LSTM
LongShortTermModel
MARS
MultivariateAdaptiveRegressionSpline
METMalaysia
MalaysianMeteorologicalDepartment
MQTT
MessageQueuingTelemetryTransport
v
(continued)
NBSS&LUP
NationalBureauofSoilSurveyandLandUsePlanning
NLP
NaturalLanguageProcessing
NPK
Nitrogen,Phosphorus,Potassium
RAG
RetrievalAugmentedGeneration
RF
RandomForest
RL
ReinforceLearning
RMFR
RajaMusaForestReserve
RSU
RoadsideUnits
SAE
SocietyofAutomotiveEngineer
SDG
SustainableDevelopmentGoal
SDK
SoftwareDevelopmentKit
SDO
StandardsDevelopingOrganization
SRC
SourceofData
TCP/IP
TransmissionControlProtocol/InternetProtocol
TTS
Text-to-Speech
UAV
UnmannedAerialVehicle
vi
AIReady–AnalysisTowardsaStandardizedReadinessFramework
1ExecutiveSummary
ThisreportprovidesananalysisoftheArtificialIntelligence(AI)ReadinessstudyaimedatdevelopingaframeworkforassessingAIReadinesswhichindicatestheabilitytoreapthebenefitsofAIintegration.Bystudyingtheactorsandcharacteristicsindifferentdomains,abottom-upapproachisfollowedwhichallowsustofindcommonpatterns,metrics,andevaluationmechanismsfortheintegrationofAIinthesedomains.
TheanalysisofcharacteristicsofusecasesledustothemainAIreadinessfactors:
1)Availabilityofopendata
Theavailabilityofdataiscrucialintraining,modeling,andapplicationsofAIirrespectiveofthedomain.Dataavailabilityforanalysismaybeprivateorpublic.Metadataforprivatedatamaybepublished(e.g.datatypesandstructures).However,publicdata,openforanalysisbyanyone,requirescleaningandanonymizationtoremoveconfidentialorpersonalinformation.
2)AccesstoResearch
Balancingthetwomainaspectsofresearch,namelyadvancementsindomain-specificresearchandadvancementsinAIresearchrequirescollaborationbetweendomainexpertsandAIresearchers.Providingaplatformforcollaborationwithexpertsfromdifferentrealmsofknowledge,facilitatingcooperation,andexchangeofinformationamongthemiskeytocreatingasustainableecosystemforAI-basedinnovation.
3)DeploymentcapabilityalongwithInfrastructure
Twomajorcategoriesofinfrastructurearestudied–physicalinfrastructureandcommunicationinfrastructure.Consideringthecontextoftransportationsafety,examplesofphysicalinfrastructurearespeedbarriersandotherregulatorymechanismsforspeedcontrol(seeclause4.2.4).Otherexamplesaregreenhouses,moisturizers(seeclause4.3.6),andsensorsthatprovideanappropriateenvironmentandmonitorplantsinagriculturalusecases.PhysicalinfrastructureelementsplayanimportantroleintheintegrationandapplicationofAIindatacollection,aggregation-attheedgeorcore,training–federatedorcentralized,andintheapplicationofArtificialIntelligenceandMachineLearning(AI/ML)inferenceusingactuators.
Inaddition,thereisbackendinfrastructure,suchascomputeavailability,storageavailability,fiber/wirelessavailabilityforthelastmile,andhigh-speedwideareanetworkcapabilities,whichwoulddemocratizeAI/MLsolutionsandcreatescalabilityforinnovations.
4)Stakeholdersbuy-inenabledbyStandards–trust,interoperability,security
Interoperabilityandcompliancewithstandardsbuildtrust.SecurestandardsleadtoAIReadiness,asglobalparticipationandconsensusdecidewhetherpre-standardresearchcouldbeadoptedintotherealworld.Vendorecosystems,includingopensource,arediverseindifferentdomainsofusecases.Goingbacktotransportationusecases,forexample,pedestriansafetyanddriversafetyareimportantconsiderations.AdoptionofAI-basedsolutionsthatinvolvehumanssuchaspedestriansanddriversrequiretheirtrustandperceptionofusingAI-basedsolutions.
5)DeveloperEcosystemcreatedviaOpensource
Anenergizedthird-partydeveloperecosystemnotonlyfast-tracksadoptionbutalsoenablesrevenuegeneration.
1
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Developerecosystembootstrapsreferenceimplementationsofalgorithms,withbaselineandopen-sourcetoolsets.Third-partyapplications,ApplicationProgrammerInterfaces(API),andSoftwareDevelopmentKits(SDK)alongwithcrowd-sourcedsolutionsincreasethegeneralizabilityofAI/MLsolutionsacrossregionsanddomainsviatransferlearning.Hardwareimplementations,especiallyopen-sourceIoTboardsareevolvingtohosttheedgedataprocessing.ReferencenetworkimplementationsprovidedviaSG20[95]referenceismaturingtothelevelofwide-scaledeployments.IoTgatewayssuchasLoRagateway,SDKs,andAPIsenablethecreationanddeploymentofnewandinnovativeapplicationsthatenableSustainableDevelopmentGoals.
6)DatacollectionandmodelvalidationviaSandboxpilotexperimentalsetups
Manyusecasesrequireanexperimentalsandbox,createexperimentalsolutions,andvalidatethemusingexperimentalsetups.Whilereal-worlddatawouldimplyamorereliablesourceofdataandarealistictestingenvironment,notallscenarioscouldbeencounteredintherealworld,especiallywhencatastrophiceventsandrelateddataarerare.
Figure1capturestheabovereadinessfactorsintotheITUAIforGoodInfinityFrameworkforAIReadiness.
Figure1:ITUAIforGoodInfinityFrameworkforAIReadiness
Thisreportcapturesfivecasestudiesinclause3,whichbringfocustospecificaspectsorimpactsofthereadinessfactors.Themappingofreadinessfactorsisrepresentedinfigureswhichcalloutthespecificreadinessfactorswhichappliestothatcasestudy.Thecasestudiesinvolvemultipleusecases.Thisreportcovers30usecasesfromvariousdomains.Eachusecasemayinturnhavedifferentusecasescenarios.Clause4hasasummaryofusecasesalongwithacluster-wisedescriptionoftheusecases.Table1inClause5describesthequantifiablecharacteristicsrelatedtoeachreadinessfactor.Thesearederivedfromthe“DetailedanalysisoftheusecasesandAIimpactsontheusecases”inrelationtoAppendixAand“SpecificimpactsofthecharacteristicsofusecasesonStandardsFrameworksforAIreadinessrequirefurtherstudy”describedinAppendixB.
2
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Thereportaudienceare:
(1)The“providers”areentitiesthatsupplyreadinessfactorssuchasdata,code,models,toolsets,andtraining.Theseproviders,whichcanbepublicorprivate,mightalsocontributetostandards.Theymayactassourcesordownstreamcollatorsofthesefactors.Examplesincludedomainexpertswhocollectandanalyzedatatocreatemodels,aswellastoolsetvendors,includingthoseofferingopen-sourcesolutions.Thereportaimstohelpprovidersidentifygapsinthesefactorsandtheirassociatedcharacteristics.
(2)The“users”areentitiesthatdeployorbenefitfromthereadinessfactors.Theyincludedecisionmakerswhoneedtodeterminewhichproviderwillofferthemaximumbenefit.Examplesofusersaregovernments,regulators,andotherentitieswithinspecificdomains.
Futurestepsandconclusionsaredescribedinclause6,mainlythreestepsareproposed(1)anopenrepositoryofdatawouldbesetuptoaddressthecorrespondingAIreadinessfactorfortheavailabilityofopendata,(2)thecreationofanexperimentationSandboxwithpre-populatedstandardcomplianttoolsetsandsimulatorsstudyingtheimpactofthereadinessfactorsand(3)derivationofopenmetricsandopensourcereferencetoolsetsformeasurementandvalidationofAIreadiness.Inaddition,aPilotAIReadinessPlugfestisplannedtogiveanopportunitytoexplaintheAIReadinessfactorstovariousstakeholdersandallowthemto“plugin”variousregionalfactorssuchasdata,models,standards,toolsets,andtraining.
TheresultsoftheplugfestalongwiththenextversionofthisreportwillbereleasedattheAIforGoodSummit2025.
Acknowledgment
WeacknowledgethesupportandareverygratefulfortheencouragementprovidedbytheKingdomofSaudiArabiaduringthisproject.
WeacknowledgealsotheworkdonebyITUFocusGrouponArtificialIntelligence(AI)andInternetofThings(IoT)forDigitalAgriculture(FG-AI4A)[96]andtheusecasespublishedbyITUAIforGoodInnovateforImpactstudy[70].
WealsoacknowledgetheeffortsoftheUNInteragencyWorkingGrouponAI,co-chairedbyITUandUNESCO,infacilitatingcoordinationwithotherUNagenciesthathavecomplementaryinitiatives.
3
AIReady–AnalysisTowardsaStandardizedReadinessFramework
2Introduction
Inthiscross-domainstudy,weanalyzedusecasesrelatedtotheuseofAIindifferentverticalssuchastrafficsafety,health,agriculture,disastermanagement,accessibility,publicservices,etcwithanaimtofindpatternsinapplicationsofAIindifferentscenarios.ThegoalwastoderiveastandardizeddataanalysismethodandmetricthatcouldbeappliedtomeasurethereadinesstouseAIforsolvingrelevantproblemsintheseusecases.OuranalysisoftheusecasesincludedthefollowingcharacteristicsofusecasestobeconsideredwhileevaluatingAIreadiness:Thedatausedineachusecase,domain-specificresearchneededintheusecase,deploymentwithinfrastructurerequirements,humanfactorssupportedbystandards,experimentationcapabilityviaasandbox,andecosystemcreationusingopensource.Thesecharacteristicsareanalyzedin“Table2–GeneralusecaseanalysisandAIimpacts”inAppendixA.
ThemainAIreadinessfactorsidentifiedinthisreportare:
1)Availabilityofopendata
TheKingdomofSaudiArabiasetupanOpenDataPlatform[3]providingdatasetstothepublictoenhanceaccesstoinformation,collaboration,andinnovation.ThemajorareasofdatasetavailabilityinthisopendataplatformareHealth,AgricultureandFishing,EducationandTraining,SocialServices,andTransportandCommunications.Thetransportationsysteminthemajorcitiesenablesadvancedusecasessuchastrackingvehicleswithexcessivespeedtoguaranteepedestriansafety,providingthebestdrivingroutestoreducethenumberoftrafficjams,andreducingthemortalityratecausedbycollision.TheseusecasesutilizediversedatasuchasimagerydatacollectedbyClosedcircuittelevision(CCTV),adetailedmapofthecity,trafficsignalinformation,andvehicleGlobalPositioningSystem(GPS)details.Thisisaprimeexampleofthecollectionandhostingofopendataandenablinganalyticsfortrafficsafety[28][19][44].
Opendataenablesprivateentrepreneurs,startups,andindustriestodevelopapplicationsordesignalgorithmstoachieveSustainableDevelopmentGoals(SDGs)suchassafetransportation.However,therearestillchallengesindatacollection,cleaning,andpreprocessingwhichhindertheopeningofdataforeveryone.Awell-designedopendatastrategywouldmakesurehigh-qualitydataisavailableforscholars,developers,andanalyststodesignsolutionsbasedonreal-worldproblems,thusenhancingtheimpactofAIonsociety.
2)AccesstoResearch
Theequalimportanceofdomain-specificresearchandtheapplicationofadvancedAImodelsinpredictingwithaccuracyisbroughtoutbyexamplessuchaspredictingintoxicationlevelsandmodelingsafedriving.Analysisofbiologicalandmedicaldatausingdomain-specific,andAI-specificresearchisimportantfortheusecase[8][10].
Forexample,whileassessingthesafedrivingbehaviorsundertheinfluence(seeClause4.2.2),notonlymonitoringofdriverbehaviorwasconsidered,butevenbiologicaldatasuchaschestmovementandbreathwerecollected.Chestmovementwascollected,andanalyzed,andthepredictedheartbeatwouldserveasreferencedataformappingthebloodalcohollevel.
Aprimeexampleofacollaborativeinitiativeisthe“AIforRoadSafety"[4]launchedbyITU,theUNSecretary-General'sSpecialEnvoyforRoadSafety,andtheUNEnvoyonTechnology.ThisinitiativepromotesanAI-enhanced“safesystem"approachtoreducefatalitiesbasedon
4
AIReady–AnalysisTowardsaStandardizedReadinessFramework
sixpillars:roadsafetymanagement,saferroadsandmobility,safervehicles,saferroadusers,post-crashresponse,andspeedcontrol.
GlobalinitiativessuchasCollaborationonIntelligentTransportationSystems(CITS)[9]intendtoprovideagloballyrecognizedforumforthecoordinationofaninternationallyaccepted,globallyharmonizedsetofIntelligentTransportationSystems(ITS)communicationstandards.
GlobalInitiativessuchasCITSallowcommunitiestoaccesscollaborativeresearchonadvancedtechnologiesrelatedtospecificusecases.
3)DeploymentcapabilityalongwithInfrastructure
NetworksinterconnectvariousnodesintheAI/MLpipeline[ITU-TY.3172]suchasthesourceofdata,pre-processing,model,anddistributionofinference.Forinstance,inagricultureusecases(seeclauses4.3.2and4.3.3)soilsensorsorwatersensorsshouldbedeployedinthefieldwithhighqualityandnumberssothatthevolumeandvarietyofdataaresufficienttotrainmodelswithaccuracy.Diseasedetectionforwheatcropsdiscussedin[38]providesanexemplarystudy.Visualcamerasaredeployed30-50centimetres(abouthalfthelengthofabaseballbat)awayfromthecropandcoverallareasoftheplants.Giventhefield'slargesurface,suchinfrastructuredeploymentcapabilityislinkedtothesolution'soverallcost.Softinfrastructuresuchashostedalgorithms,GraphicsProcessingUnit(GPU)computeplatforms,andnetworkprotocolstacksprovidebackendcomputingandcommunications.
Thesepracticaldeploymentaspectssuchasnetworks,sensors,visualcameras,GPUandcompute,formtheinfrastructurerequirementsthataffecttheAIreadiness.
Apartfromlabsimulationsandexperimentations,real-worldpilotsanddeploymentsupportareneededtovalidateinnovativesolutions.PeatlandForestusecase[48]whichaimstopredictthepotentialfire,providesanexemplarstudywherethedesignedalgorithmcouldbeappliedandvalidatedintherealworld.TheLoRagatewaywasdeployedtodistributetheworkflowandensurealow-latencynetwork.Inthesoilmoisturetestingusecase(seeclause4.3.4),edgestoragewasappliedtospeeduptheprocessandsecuretheaccuracyofthesystem.IntheIoT-basedcropmonitoringusecase(seeclause4.3.5),edgedataisacquired.
Ingeneral,computationavailableattheedge,eitherprovidedusingpublic,open,orprivateinfrastructurewouldenableverticalapplicationstopoolandhosttime-criticalapplicationsclosertotheuser.Coordinationofsatellitedata[51]andtheadditionofgeospatialcapabilitiesandinfrastructurewouldcreatevalueandstimulatetheeconomyaroundgeospatialdata.Cloudhostingofopendata,availabilityofschemes,policiesinmachine-readableformat[49],openportals,andreal-timeupdatesfromagencies[50]includingvisualizationdashboardsandmobileappshelpsinbetterintegrationofAIinusecases.
4)Stakeholdersbuy-inenabledbyStandards
Interoperabilityamongdifferentsolutionprovidersbringsthechoiceofdifferentvendors,irrespectiveofopenorproprietarysolutions,tosuchprimaryactors.Standardsplayanimportantroleinensuringcomplianceandinteroperability.
Forexample,primaryactorsintheagriculturedomainarethefarmers[14][35]whotaketheinitiativeinadoptingInternetofThings(IoT)-basedsensorsfordatacollection,edgedevicesforanalytics,andlow-powercommunicationsystems,whichimpliesthattheirtrustandwillingnesstoonboardareimportant.
5
AIReady–AnalysisTowardsaStandardizedReadinessFramework
Asanexample,anadvanceddrivingassistancesystem(seeclause4.2.3)involvesdifferentcarmanufacturerswithdifferentimplementationswhomightadoptdifferentparameters,thedivergenceinimplementationmightcreatelock-insituationsforuserspreventingflexibilityandchoiceofvendors.Additionally,issuesconcerningdataprivacy,dataprotection,andresponsibilitiesaretobestudiedcollaborativelyinopenstandardssuchasthosedevelopedbyITU,whichwillensuresecure,trustable,andinteroperableend-to-endsolutions.
5)DeveloperEcosystemcreatedviaOpensource
Cloud-hostedsolutionswithexposedAPIsforsubscribing/publishingdatafromportals[49]wouldcreatevaluefortheoverallindustryandleadtoinnovativeapplicationsthatsolvereal-worldproblemsusingAI/ML.Aprimeexampleisresearchsolutionsforsatellitedatausageinthefirepropagationmodel[51].
Referencesolutions,openmodels,andtoolsetscreatedinopensourcehelpinmobilizingresearchandinnovation,actingasabaselineforAIintegration,whichcouldbeextended,enhancedoroptimizedbasedonspecificusecaserequirements.SolutionspublishedasaresultofITUAI/MLChallengessuchastheTinyMLChallenge[66]aregoodexamplesofopen,published,anddeveloper-drivensolutions.
6)DatacollectionandmodelvalidationviaSandboxpilotexperimentalsetups
ITUdefinedMLSandboxin[ITU-TY.3172]anddescribedthedetailsofSandboxarchitecturesin[ITU-TY.3181].Inessence,Sandboxisanenvironmentinwhichmachinelearningmodelscanbetrainedandtheireffectstestedandevaluatedbeforedeployingintherealworld.Thishassinceseenwiderapplicationsinvarioususecases.
ImplementingcontinuousimprovementofmodelsusingfeedbackandoptimizationsintheSandboxhelpstooptimizeessentialtaskswithindisaster-strickenareas[52].Unmannedaerialvehicles(UAVs)canlearnandadjusttheiroperations(includingroutenavigation,returningtochargingstations,anddatadetectionandtransmission)basedonfeedbackfromtheenvironment.
Forexample,trafficregulationscenariosusingvisualcameras[36]andothersensorsuseAI/MLfeedbackloops,whichcollectdata,produceinferences,createactionrecommendationsandpolicyapplications,andaretestedandvalidatedusingpre-builttrafficplansforspecificoccasions.
PilotsetupsviaSandboxescanhelpinassimilatinglocalcommunitiesandutilitiesintothesolution.Forexample,in[51],firedetectionandpropagationmodelsaretestedandvalidated,andalarmsareusedtoprovideadvancedinformationtolocalcommunitiesandutilities.
6
AIReady–AnalysisTowardsaStandardizedReadinessFramework
3CaseStudies
Aspartofourstudiesonusecases,andourdetaileddiscussionswiththeusecaseauthors,wehaveselectedcertaincasestudieswhichbringoutthebenefits(orlackofit)forincreasing/measuringAIreadiness.EspeciallywefocusonthosecasestudiesthatutilizethereadinessfactorsmentionedinSection1above.Inaddition,welookforclearmetadata,supportingreferences,andpublishedresearchpapers,withexperimentationthatcanpracticallyshowcasethebenefitsofAIreadinessontheseterms.
Eachcasestudyismappedtothe6readinessfactorslistedinclause2aboveandtheinstancesofthereadinessfactorsareexplainedforeachcasestudy.
3.1CaseStudy-1:IoT-basedEnvironmentMonitoringBasedon
StandardIndices
Thiscasestudyinvolvesasetofusecaseswhichmonitorenvironmentparameterssuchassoilsensor,piezometers,andwaterlevelsensorsetc.andinferstandardizedindicesforspecificusecasese.g.groundwaterlevel(GWL)mappedtodroughtcodes(DC).Theareaofcoveragemaybequitelarge,forexample,multiplehectorsofforestland.Verificationofsenseddataandinferreddatawithgroundtruthincollaborationwithexpertsisanessentialcharacteristicofsuchusecases.Communicationnetworks,includingdataformatconversionsareimportantstandardrequirementsforsuchusecases.
Net-Peat-Zero[48]:NetworkedAssociationofSoutheastAsianNations(ASEAN)PeatlandForestforNet-ZerodeliveredbyUniversityPutraMalaysiaisanexcellentexampleofausecasewithreal-worlddeploymentanditsapplicationofopendata,whichisaccessibletoeveryone.
ThisusecasepresentsthepossibilitytoleverageAIinpredictingForestFireinpeatlandareasinSouthAsia.Animprovedtropicalpeatlandfireweatherindex(FWI)systemisproposed,bycombiningthegroundwaterlevel(GWL)withthedroughtcode(DC).Tomonitorthepeatland,aLoRa-basedIoTsystemisused,andsensorssuchassoilsensors,piezometersensors,waterlevelsensors,andweathersensorsareused,withtheexpectationthatintegralmeteorologicalinformationcouldbedetected.Allthedatamentionedabovecouldbecross-checkedwiththeonesusedbytheMalaysianMeteorologicalDepartment(METMalaysia),whichmeansthatthedatacollectedbytheIoTsystemisauthenticandreadytobeprocessed.
Inaddition,animprovedmodeltoapplytheGWLisproposedfortheFWIformulationintheFireDangerRatingSystem(FDRS).Specifically,DCisformulatedusingGWL,insteadoftemperatureandrainintheexistingmodel.FromtheGWLaggregatedfromtheIoTsystem,theparameterispredictedusingmachinelearningbasedonaneuralnetwork.TheresultsshowthattheDCcalculatedfromtheIoTsystemhasahighcorre
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人建房小型合同样本
- 公路土建施工合同标准文本
- 供应石灰合同样本
- 共享品牌经营合同样本
- 互助铺子转让合同标准文本
- 入股石矿合同标准文本
- 借款退款合同标准文本
- 二手车报价合同标准文本
- 借用别公司合同标准文本
- 全款备案合同标准文本
- (二模)温州市2025届高三第二次适应性考试语文试卷(含答案)
- 2024-2025学年人教版数学八年级下册第一次月考模拟练习(含答案)
- 浙江省杭州市五县七校2025年下学期高三第一次月考数学试题含解析
- 2025届河北省承德市、张家口市高三下学期一模考试英语试题(含答案)
- 2024山西云时代技术有限公司社会招聘59人笔试参考题库附带答案详解
- 2025年三峡旅游职业技术学院单招职业技能测试题库必考题
- Unit+4+Eat+Well+Section+A+2a~2e课件-2024-2025学年人教版(2024)英语七年级下册+
- 2025年主提升机司机试题及答案
- 全国行政区域身份证代码表(电子表格版)
- 《电气安全规范》课件
- 2024年滁州来安农商银行社会招聘笔试真题
评论
0/150
提交评论