2024人工智能就绪度分析报告:向标准化就绪框架迈进(英文版)ITU国际电信联盟_第1页
2024人工智能就绪度分析报告:向标准化就绪框架迈进(英文版)ITU国际电信联盟_第2页
2024人工智能就绪度分析报告:向标准化就绪框架迈进(英文版)ITU国际电信联盟_第3页
2024人工智能就绪度分析报告:向标准化就绪框架迈进(英文版)ITU国际电信联盟_第4页
2024人工智能就绪度分析报告:向标准化就绪框架迈进(英文版)ITU国际电信联盟_第5页
已阅读5页,还剩121页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ITUPublicationsInternationalTelecommunicationUnion

TelecommunicationStandardizationSector

AIReady–AnalysisTowardsaStandardizedReadiness

Framework

Version1.0

September2024

ITU

AIReady–AnalysisTowardsaStandardizedReadinessFramework

Version1.0

September2024

ITU

Disclaimers

Thedesignationsemployedandthepresentationofthematerialinthispublicationdonotimply

theexpressionofanyopinionwhatsoeveronthepartoftheInternationalTelecommunicationUnion(ITU)oroftheITUsecretariatconcerningthelegalstatusofanycountry,territory,city,orareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.

Thementionofspecificcompaniesorofcertainmanufacturers’productsdoesnotimplythattheyareendorsedorrecommendedbyITUinpreferencetoothersofasimilarnaturethatarenotmentioned.Errorsandomissionsexcepted;thenamesofproprietaryproductsaredistinguishedbyinitialcapitalletters.

AllreasonableprecautionshavebeentakenbyITUtoverifytheinformationcontainedinthispublication.However,thepublishedmaterialisbeingdistributedwithoutwarrantyofanykind,eitherexpressedorimplied.Theresponsibilityfortheinterpretationanduseofthemateriallieswiththereader.

Theopinions,findingsandconclusionsexpressedinthispublicationdonotnecessarilyreflecttheviewsofITUoritsmembership.

ISBN

978-92-61-39131-7(Electronicversion)978-92-61-39141-6(EPUBversion)

978-92-61-39151-5(Mobiversion)

Pleaseconsidertheenvironmentbeforeprintingthisreport.

©ITU2024

Somerightsreserved.ThisworkislicensedtothepublicthroughaCreativeCommonsAttribution-Non-Commercial-ShareAlike3.0IGOlicense(CCBY-NC-SA3.0IGO).

Underthetermsofthislicence,youmaycopy,redistributeandadapttheworkfornon-commercialpurposes,providedtheworkisappropriatelycited.Inanyuseofthiswork,thereshouldbenosuggestionthatITUendorseanyspecificorganization,productsorservices.TheunauthorizeduseoftheITUnamesorlogosisnotpermitted.Ifyouadaptthework,thenyoumustlicenseyourworkunderthesameorequivalentCreativeCommonslicence.Ifyoucreateatranslationofthiswork,youshouldaddthefollowingdisclaimeralongwiththesuggestedcitation:“ThistranslationwasnotcreatedbytheInternationalTelecommunicationUnion(ITU).ITUisnotresponsibleforthecontentoraccuracyofthistranslation.TheoriginalEnglisheditionshallbethebindingandauthenticedition”.Formoreinformation,pleasevisit

/

licenses/by-nc-sa/3.0/igo/

Tableofcontents

Acronyms

v

1ExecutiveSummary

1

2Introduction

4

3CaseStudies

7

3.1CaseStudy-1:IoT-basedEnvironmentMonitoringBasedon

StandardIndices

7

3.2CaseStudy-2:AI-basedFrontendwithMultimodalBackendData

Aggregation

8

3.3CaseStudy-3:CollaborativeMulti-agentSystems

9

3.4CaseStudy-4:EmpoweringLocalCommunities

12

3.5CaseStudy-5:RegionalCustomizations

14

4UseCaseAnalysis

16

4.1UseCaseSummaries

16

4.2TrafficSafety

17

4.3SmartAgriculture

18

4.4HealthCare

21

4.5PublicServices

22

4.6DisasterPrevention

24

4.7Climate,CleanEnergy

25

4.8FutureNetworksandTelecommunications

26

4.9Accessibility

26

5DataAnalyticsStrategy

29

6Futureworkandconclusion

33

7Reference

34

AppendixA:DetailedanalysisoftheusecasesandAIimpactsontheusecases

41

AppendixB:SpecificimpactsofthesecharacteristicsonStandardsFrameworks

forAIreadinessrequirefurtherstudy

51

iii

Listoffiguresandtables

Figures

Figure1:ITUAIforGoodInfinityFrameworkforAIReadiness

2

Figure2:InstancesofReadinessFactorsinCaseStudy-1

8

Figure3:InstancesofReadinessFactorsinCaseStudy-2

9

Figure4:InstancesofReadinessFactorsinCaseStudy-3

11

Figure5:InstancesofReadinessFactorsinCaseStudy-4

13

Figure6:InstancesofReadinessFactorsinCaseStudy-5

15

Tables

Table1:CharacteristicsoftheAIReadinessfactors

29

Table2:GeneralusecaseanalysisandAIimpacts

41

Table3:Analysisofusecasescenarios

51

iv

Acronyms

ADAS

AdvancedDrivingAssistanceSystem

AEB

AutonomousEmergencyBraking

AI

ArtificialIntelligence

AIML

ArtificialIntelligenceandMachineLearning

API

ApplicationProgrammerInterfaces

ASEAN

AssociationofSoutheastAsianNations

ASR

AutomaticSpeechRecognition

CBAM

ConvolutionalBlockAttentionMechanism

CCTV

ClosedCircuitTelevision

CfE

CallforEngagement

DC

DroughtCode

DMC

DuffMoistureCode

DSRC

DedicatedShort-RangeCommunication

DUI

DrivingunderIntoxication

FDRS

FireDangerRatingSystem

FWI

FireWeatherIndex

GPS

GlobalPositioningSystem

GPU

GraphicsProcessingUnit

GWL

GroundwaterLevel

IASRI

IndianAgriculturalStatisticsResearchInstitute

IISS

IndianInstituteofSoilScience

IMD

IndianMeteorologicalDepartment

IoT

InternetofThings

KPI

KeyPerformanceIndicator

LSTM

LongShortTermModel

MARS

MultivariateAdaptiveRegressionSpline

METMalaysia

MalaysianMeteorologicalDepartment

MQTT

MessageQueuingTelemetryTransport

v

(continued)

NBSS&LUP

NationalBureauofSoilSurveyandLandUsePlanning

NLP

NaturalLanguageProcessing

NPK

Nitrogen,Phosphorus,Potassium

RAG

RetrievalAugmentedGeneration

RF

RandomForest

RL

ReinforceLearning

RMFR

RajaMusaForestReserve

RSU

RoadsideUnits

SAE

SocietyofAutomotiveEngineer

SDG

SustainableDevelopmentGoal

SDK

SoftwareDevelopmentKit

SDO

StandardsDevelopingOrganization

SRC

SourceofData

TCP/IP

TransmissionControlProtocol/InternetProtocol

TTS

Text-to-Speech

UAV

UnmannedAerialVehicle

vi

AIReady–AnalysisTowardsaStandardizedReadinessFramework

1ExecutiveSummary

ThisreportprovidesananalysisoftheArtificialIntelligence(AI)ReadinessstudyaimedatdevelopingaframeworkforassessingAIReadinesswhichindicatestheabilitytoreapthebenefitsofAIintegration.Bystudyingtheactorsandcharacteristicsindifferentdomains,abottom-upapproachisfollowedwhichallowsustofindcommonpatterns,metrics,andevaluationmechanismsfortheintegrationofAIinthesedomains.

TheanalysisofcharacteristicsofusecasesledustothemainAIreadinessfactors:

1)Availabilityofopendata

Theavailabilityofdataiscrucialintraining,modeling,andapplicationsofAIirrespectiveofthedomain.Dataavailabilityforanalysismaybeprivateorpublic.Metadataforprivatedatamaybepublished(e.g.datatypesandstructures).However,publicdata,openforanalysisbyanyone,requirescleaningandanonymizationtoremoveconfidentialorpersonalinformation.

2)AccesstoResearch

Balancingthetwomainaspectsofresearch,namelyadvancementsindomain-specificresearchandadvancementsinAIresearchrequirescollaborationbetweendomainexpertsandAIresearchers.Providingaplatformforcollaborationwithexpertsfromdifferentrealmsofknowledge,facilitatingcooperation,andexchangeofinformationamongthemiskeytocreatingasustainableecosystemforAI-basedinnovation.

3)DeploymentcapabilityalongwithInfrastructure

Twomajorcategoriesofinfrastructurearestudied–physicalinfrastructureandcommunicationinfrastructure.Consideringthecontextoftransportationsafety,examplesofphysicalinfrastructurearespeedbarriersandotherregulatorymechanismsforspeedcontrol(seeclause4.2.4).Otherexamplesaregreenhouses,moisturizers(seeclause4.3.6),andsensorsthatprovideanappropriateenvironmentandmonitorplantsinagriculturalusecases.PhysicalinfrastructureelementsplayanimportantroleintheintegrationandapplicationofAIindatacollection,aggregation-attheedgeorcore,training–federatedorcentralized,andintheapplicationofArtificialIntelligenceandMachineLearning(AI/ML)inferenceusingactuators.

Inaddition,thereisbackendinfrastructure,suchascomputeavailability,storageavailability,fiber/wirelessavailabilityforthelastmile,andhigh-speedwideareanetworkcapabilities,whichwoulddemocratizeAI/MLsolutionsandcreatescalabilityforinnovations.

4)Stakeholdersbuy-inenabledbyStandards–trust,interoperability,security

Interoperabilityandcompliancewithstandardsbuildtrust.SecurestandardsleadtoAIReadiness,asglobalparticipationandconsensusdecidewhetherpre-standardresearchcouldbeadoptedintotherealworld.Vendorecosystems,includingopensource,arediverseindifferentdomainsofusecases.Goingbacktotransportationusecases,forexample,pedestriansafetyanddriversafetyareimportantconsiderations.AdoptionofAI-basedsolutionsthatinvolvehumanssuchaspedestriansanddriversrequiretheirtrustandperceptionofusingAI-basedsolutions.

5)DeveloperEcosystemcreatedviaOpensource

Anenergizedthird-partydeveloperecosystemnotonlyfast-tracksadoptionbutalsoenablesrevenuegeneration.

1

AIReady–AnalysisTowardsaStandardizedReadinessFramework

Developerecosystembootstrapsreferenceimplementationsofalgorithms,withbaselineandopen-sourcetoolsets.Third-partyapplications,ApplicationProgrammerInterfaces(API),andSoftwareDevelopmentKits(SDK)alongwithcrowd-sourcedsolutionsincreasethegeneralizabilityofAI/MLsolutionsacrossregionsanddomainsviatransferlearning.Hardwareimplementations,especiallyopen-sourceIoTboardsareevolvingtohosttheedgedataprocessing.ReferencenetworkimplementationsprovidedviaSG20[95]referenceismaturingtothelevelofwide-scaledeployments.IoTgatewayssuchasLoRagateway,SDKs,andAPIsenablethecreationanddeploymentofnewandinnovativeapplicationsthatenableSustainableDevelopmentGoals.

6)DatacollectionandmodelvalidationviaSandboxpilotexperimentalsetups

Manyusecasesrequireanexperimentalsandbox,createexperimentalsolutions,andvalidatethemusingexperimentalsetups.Whilereal-worlddatawouldimplyamorereliablesourceofdataandarealistictestingenvironment,notallscenarioscouldbeencounteredintherealworld,especiallywhencatastrophiceventsandrelateddataarerare.

Figure1capturestheabovereadinessfactorsintotheITUAIforGoodInfinityFrameworkforAIReadiness.

Figure1:ITUAIforGoodInfinityFrameworkforAIReadiness

Thisreportcapturesfivecasestudiesinclause3,whichbringfocustospecificaspectsorimpactsofthereadinessfactors.Themappingofreadinessfactorsisrepresentedinfigureswhichcalloutthespecificreadinessfactorswhichappliestothatcasestudy.Thecasestudiesinvolvemultipleusecases.Thisreportcovers30usecasesfromvariousdomains.Eachusecasemayinturnhavedifferentusecasescenarios.Clause4hasasummaryofusecasesalongwithacluster-wisedescriptionoftheusecases.Table1inClause5describesthequantifiablecharacteristicsrelatedtoeachreadinessfactor.Thesearederivedfromthe“DetailedanalysisoftheusecasesandAIimpactsontheusecases”inrelationtoAppendixAand“SpecificimpactsofthecharacteristicsofusecasesonStandardsFrameworksforAIreadinessrequirefurtherstudy”describedinAppendixB.

2

AIReady–AnalysisTowardsaStandardizedReadinessFramework

Thereportaudienceare:

(1)The“providers”areentitiesthatsupplyreadinessfactorssuchasdata,code,models,toolsets,andtraining.Theseproviders,whichcanbepublicorprivate,mightalsocontributetostandards.Theymayactassourcesordownstreamcollatorsofthesefactors.Examplesincludedomainexpertswhocollectandanalyzedatatocreatemodels,aswellastoolsetvendors,includingthoseofferingopen-sourcesolutions.Thereportaimstohelpprovidersidentifygapsinthesefactorsandtheirassociatedcharacteristics.

(2)The“users”areentitiesthatdeployorbenefitfromthereadinessfactors.Theyincludedecisionmakerswhoneedtodeterminewhichproviderwillofferthemaximumbenefit.Examplesofusersaregovernments,regulators,andotherentitieswithinspecificdomains.

Futurestepsandconclusionsaredescribedinclause6,mainlythreestepsareproposed(1)anopenrepositoryofdatawouldbesetuptoaddressthecorrespondingAIreadinessfactorfortheavailabilityofopendata,(2)thecreationofanexperimentationSandboxwithpre-populatedstandardcomplianttoolsetsandsimulatorsstudyingtheimpactofthereadinessfactorsand(3)derivationofopenmetricsandopensourcereferencetoolsetsformeasurementandvalidationofAIreadiness.Inaddition,aPilotAIReadinessPlugfestisplannedtogiveanopportunitytoexplaintheAIReadinessfactorstovariousstakeholdersandallowthemto“plugin”variousregionalfactorssuchasdata,models,standards,toolsets,andtraining.

TheresultsoftheplugfestalongwiththenextversionofthisreportwillbereleasedattheAIforGoodSummit2025.

Acknowledgment

WeacknowledgethesupportandareverygratefulfortheencouragementprovidedbytheKingdomofSaudiArabiaduringthisproject.

WeacknowledgealsotheworkdonebyITUFocusGrouponArtificialIntelligence(AI)andInternetofThings(IoT)forDigitalAgriculture(FG-AI4A)[96]andtheusecasespublishedbyITUAIforGoodInnovateforImpactstudy[70].

WealsoacknowledgetheeffortsoftheUNInteragencyWorkingGrouponAI,co-chairedbyITUandUNESCO,infacilitatingcoordinationwithotherUNagenciesthathavecomplementaryinitiatives.

3

AIReady–AnalysisTowardsaStandardizedReadinessFramework

2Introduction

Inthiscross-domainstudy,weanalyzedusecasesrelatedtotheuseofAIindifferentverticalssuchastrafficsafety,health,agriculture,disastermanagement,accessibility,publicservices,etcwithanaimtofindpatternsinapplicationsofAIindifferentscenarios.ThegoalwastoderiveastandardizeddataanalysismethodandmetricthatcouldbeappliedtomeasurethereadinesstouseAIforsolvingrelevantproblemsintheseusecases.OuranalysisoftheusecasesincludedthefollowingcharacteristicsofusecasestobeconsideredwhileevaluatingAIreadiness:Thedatausedineachusecase,domain-specificresearchneededintheusecase,deploymentwithinfrastructurerequirements,humanfactorssupportedbystandards,experimentationcapabilityviaasandbox,andecosystemcreationusingopensource.Thesecharacteristicsareanalyzedin“Table2–GeneralusecaseanalysisandAIimpacts”inAppendixA.

ThemainAIreadinessfactorsidentifiedinthisreportare:

1)Availabilityofopendata

TheKingdomofSaudiArabiasetupanOpenDataPlatform[3]providingdatasetstothepublictoenhanceaccesstoinformation,collaboration,andinnovation.ThemajorareasofdatasetavailabilityinthisopendataplatformareHealth,AgricultureandFishing,EducationandTraining,SocialServices,andTransportandCommunications.Thetransportationsysteminthemajorcitiesenablesadvancedusecasessuchastrackingvehicleswithexcessivespeedtoguaranteepedestriansafety,providingthebestdrivingroutestoreducethenumberoftrafficjams,andreducingthemortalityratecausedbycollision.TheseusecasesutilizediversedatasuchasimagerydatacollectedbyClosedcircuittelevision(CCTV),adetailedmapofthecity,trafficsignalinformation,andvehicleGlobalPositioningSystem(GPS)details.Thisisaprimeexampleofthecollectionandhostingofopendataandenablinganalyticsfortrafficsafety[28][19][44].

Opendataenablesprivateentrepreneurs,startups,andindustriestodevelopapplicationsordesignalgorithmstoachieveSustainableDevelopmentGoals(SDGs)suchassafetransportation.However,therearestillchallengesindatacollection,cleaning,andpreprocessingwhichhindertheopeningofdataforeveryone.Awell-designedopendatastrategywouldmakesurehigh-qualitydataisavailableforscholars,developers,andanalyststodesignsolutionsbasedonreal-worldproblems,thusenhancingtheimpactofAIonsociety.

2)AccesstoResearch

Theequalimportanceofdomain-specificresearchandtheapplicationofadvancedAImodelsinpredictingwithaccuracyisbroughtoutbyexamplessuchaspredictingintoxicationlevelsandmodelingsafedriving.Analysisofbiologicalandmedicaldatausingdomain-specific,andAI-specificresearchisimportantfortheusecase[8][10].

Forexample,whileassessingthesafedrivingbehaviorsundertheinfluence(seeClause4.2.2),notonlymonitoringofdriverbehaviorwasconsidered,butevenbiologicaldatasuchaschestmovementandbreathwerecollected.Chestmovementwascollected,andanalyzed,andthepredictedheartbeatwouldserveasreferencedataformappingthebloodalcohollevel.

Aprimeexampleofacollaborativeinitiativeisthe“AIforRoadSafety"[4]launchedbyITU,theUNSecretary-General'sSpecialEnvoyforRoadSafety,andtheUNEnvoyonTechnology.ThisinitiativepromotesanAI-enhanced“safesystem"approachtoreducefatalitiesbasedon

4

AIReady–AnalysisTowardsaStandardizedReadinessFramework

sixpillars:roadsafetymanagement,saferroadsandmobility,safervehicles,saferroadusers,post-crashresponse,andspeedcontrol.

GlobalinitiativessuchasCollaborationonIntelligentTransportationSystems(CITS)[9]intendtoprovideagloballyrecognizedforumforthecoordinationofaninternationallyaccepted,globallyharmonizedsetofIntelligentTransportationSystems(ITS)communicationstandards.

GlobalInitiativessuchasCITSallowcommunitiestoaccesscollaborativeresearchonadvancedtechnologiesrelatedtospecificusecases.

3)DeploymentcapabilityalongwithInfrastructure

NetworksinterconnectvariousnodesintheAI/MLpipeline[ITU-TY.3172]suchasthesourceofdata,pre-processing,model,anddistributionofinference.Forinstance,inagricultureusecases(seeclauses4.3.2and4.3.3)soilsensorsorwatersensorsshouldbedeployedinthefieldwithhighqualityandnumberssothatthevolumeandvarietyofdataaresufficienttotrainmodelswithaccuracy.Diseasedetectionforwheatcropsdiscussedin[38]providesanexemplarystudy.Visualcamerasaredeployed30-50centimetres(abouthalfthelengthofabaseballbat)awayfromthecropandcoverallareasoftheplants.Giventhefield'slargesurface,suchinfrastructuredeploymentcapabilityislinkedtothesolution'soverallcost.Softinfrastructuresuchashostedalgorithms,GraphicsProcessingUnit(GPU)computeplatforms,andnetworkprotocolstacksprovidebackendcomputingandcommunications.

Thesepracticaldeploymentaspectssuchasnetworks,sensors,visualcameras,GPUandcompute,formtheinfrastructurerequirementsthataffecttheAIreadiness.

Apartfromlabsimulationsandexperimentations,real-worldpilotsanddeploymentsupportareneededtovalidateinnovativesolutions.PeatlandForestusecase[48]whichaimstopredictthepotentialfire,providesanexemplarstudywherethedesignedalgorithmcouldbeappliedandvalidatedintherealworld.TheLoRagatewaywasdeployedtodistributetheworkflowandensurealow-latencynetwork.Inthesoilmoisturetestingusecase(seeclause4.3.4),edgestoragewasappliedtospeeduptheprocessandsecuretheaccuracyofthesystem.IntheIoT-basedcropmonitoringusecase(seeclause4.3.5),edgedataisacquired.

Ingeneral,computationavailableattheedge,eitherprovidedusingpublic,open,orprivateinfrastructurewouldenableverticalapplicationstopoolandhosttime-criticalapplicationsclosertotheuser.Coordinationofsatellitedata[51]andtheadditionofgeospatialcapabilitiesandinfrastructurewouldcreatevalueandstimulatetheeconomyaroundgeospatialdata.Cloudhostingofopendata,availabilityofschemes,policiesinmachine-readableformat[49],openportals,andreal-timeupdatesfromagencies[50]includingvisualizationdashboardsandmobileappshelpsinbetterintegrationofAIinusecases.

4)Stakeholdersbuy-inenabledbyStandards

Interoperabilityamongdifferentsolutionprovidersbringsthechoiceofdifferentvendors,irrespectiveofopenorproprietarysolutions,tosuchprimaryactors.Standardsplayanimportantroleinensuringcomplianceandinteroperability.

Forexample,primaryactorsintheagriculturedomainarethefarmers[14][35]whotaketheinitiativeinadoptingInternetofThings(IoT)-basedsensorsfordatacollection,edgedevicesforanalytics,andlow-powercommunicationsystems,whichimpliesthattheirtrustandwillingnesstoonboardareimportant.

5

AIReady–AnalysisTowardsaStandardizedReadinessFramework

Asanexample,anadvanceddrivingassistancesystem(seeclause4.2.3)involvesdifferentcarmanufacturerswithdifferentimplementationswhomightadoptdifferentparameters,thedivergenceinimplementationmightcreatelock-insituationsforuserspreventingflexibilityandchoiceofvendors.Additionally,issuesconcerningdataprivacy,dataprotection,andresponsibilitiesaretobestudiedcollaborativelyinopenstandardssuchasthosedevelopedbyITU,whichwillensuresecure,trustable,andinteroperableend-to-endsolutions.

5)DeveloperEcosystemcreatedviaOpensource

Cloud-hostedsolutionswithexposedAPIsforsubscribing/publishingdatafromportals[49]wouldcreatevaluefortheoverallindustryandleadtoinnovativeapplicationsthatsolvereal-worldproblemsusingAI/ML.Aprimeexampleisresearchsolutionsforsatellitedatausageinthefirepropagationmodel[51].

Referencesolutions,openmodels,andtoolsetscreatedinopensourcehelpinmobilizingresearchandinnovation,actingasabaselineforAIintegration,whichcouldbeextended,enhancedoroptimizedbasedonspecificusecaserequirements.SolutionspublishedasaresultofITUAI/MLChallengessuchastheTinyMLChallenge[66]aregoodexamplesofopen,published,anddeveloper-drivensolutions.

6)DatacollectionandmodelvalidationviaSandboxpilotexperimentalsetups

ITUdefinedMLSandboxin[ITU-TY.3172]anddescribedthedetailsofSandboxarchitecturesin[ITU-TY.3181].Inessence,Sandboxisanenvironmentinwhichmachinelearningmodelscanbetrainedandtheireffectstestedandevaluatedbeforedeployingintherealworld.Thishassinceseenwiderapplicationsinvarioususecases.

ImplementingcontinuousimprovementofmodelsusingfeedbackandoptimizationsintheSandboxhelpstooptimizeessentialtaskswithindisaster-strickenareas[52].Unmannedaerialvehicles(UAVs)canlearnandadjusttheiroperations(includingroutenavigation,returningtochargingstations,anddatadetectionandtransmission)basedonfeedbackfromtheenvironment.

Forexample,trafficregulationscenariosusingvisualcameras[36]andothersensorsuseAI/MLfeedbackloops,whichcollectdata,produceinferences,createactionrecommendationsandpolicyapplications,andaretestedandvalidatedusingpre-builttrafficplansforspecificoccasions.

PilotsetupsviaSandboxescanhelpinassimilatinglocalcommunitiesandutilitiesintothesolution.Forexample,in[51],firedetectionandpropagationmodelsaretestedandvalidated,andalarmsareusedtoprovideadvancedinformationtolocalcommunitiesandutilities.

6

AIReady–AnalysisTowardsaStandardizedReadinessFramework

3CaseStudies

Aspartofourstudiesonusecases,andourdetaileddiscussionswiththeusecaseauthors,wehaveselectedcertaincasestudieswhichbringoutthebenefits(orlackofit)forincreasing/measuringAIreadiness.EspeciallywefocusonthosecasestudiesthatutilizethereadinessfactorsmentionedinSection1above.Inaddition,welookforclearmetadata,supportingreferences,andpublishedresearchpapers,withexperimentationthatcanpracticallyshowcasethebenefitsofAIreadinessontheseterms.

Eachcasestudyismappedtothe6readinessfactorslistedinclause2aboveandtheinstancesofthereadinessfactorsareexplainedforeachcasestudy.

3.1CaseStudy-1:IoT-basedEnvironmentMonitoringBasedon

StandardIndices

Thiscasestudyinvolvesasetofusecaseswhichmonitorenvironmentparameterssuchassoilsensor,piezometers,andwaterlevelsensorsetc.andinferstandardizedindicesforspecificusecasese.g.groundwaterlevel(GWL)mappedtodroughtcodes(DC).Theareaofcoveragemaybequitelarge,forexample,multiplehectorsofforestland.Verificationofsenseddataandinferreddatawithgroundtruthincollaborationwithexpertsisanessentialcharacteristicofsuchusecases.Communicationnetworks,includingdataformatconversionsareimportantstandardrequirementsforsuchusecases.

Net-Peat-Zero[48]:NetworkedAssociationofSoutheastAsianNations(ASEAN)PeatlandForestforNet-ZerodeliveredbyUniversityPutraMalaysiaisanexcellentexampleofausecasewithreal-worlddeploymentanditsapplicationofopendata,whichisaccessibletoeveryone.

ThisusecasepresentsthepossibilitytoleverageAIinpredictingForestFireinpeatlandareasinSouthAsia.Animprovedtropicalpeatlandfireweatherindex(FWI)systemisproposed,bycombiningthegroundwaterlevel(GWL)withthedroughtcode(DC).Tomonitorthepeatland,aLoRa-basedIoTsystemisused,andsensorssuchassoilsensors,piezometersensors,waterlevelsensors,andweathersensorsareused,withtheexpectationthatintegralmeteorologicalinformationcouldbedetected.Allthedatamentionedabovecouldbecross-checkedwiththeonesusedbytheMalaysianMeteorologicalDepartment(METMalaysia),whichmeansthatthedatacollectedbytheIoTsystemisauthenticandreadytobeprocessed.

Inaddition,animprovedmodeltoapplytheGWLisproposedfortheFWIformulationintheFireDangerRatingSystem(FDRS).Specifically,DCisformulatedusingGWL,insteadoftemperatureandrainintheexistingmodel.FromtheGWLaggregatedfromtheIoTsystem,theparameterispredictedusingmachinelearningbasedonaneuralnetwork.TheresultsshowthattheDCcalculatedfromtheIoTsystemhasahighcorre

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论