机器学习第九章-1_第1页
机器学习第九章-1_第2页
机器学习第九章-1_第3页
机器学习第九章-1_第4页
机器学习第九章-1_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MachineLearningCHAPTER9GeneticAlgorithmsOutlineGeneticalgorithmprovideanapproachlearningthatisbasedlooselyonsimulatedevolution.HypothesesaredescribedbybitstringswhoseinterpretationdependsontheapplicationThesearchbeginswithapopulationofinitialhypotheses.ThenextgenerationofpopulationisgeneratedbymeansofoperationssuchasrandommutationandcrossoverHypothesesareevaluatedbyameasureoffitness.Application9.1MotivationGeneticalgorithmsismotivatedbyananalogytobiologicalevolutionGAsgeneratesuccessorhbyrepeatedlymutatingandrecombiningpartsofthebestcurrentlyknownhypothesesHissearchedbyagenerated-and-testbeam-searchThepopularityofGAsismotivatedby: evolutionofbiologicalsystem abilityofsearchingHcontainingcomplexinteractingparts abilityofparallelizingcomputingContentofthischapter9.2GeneticAlgorithmsHypothesisfitnessStructureofGAs: iterativelyupdatingapopulation evaluationofmembersofapopulation generatenewpopulation

AprototypicalgeneticalgorithmGA(Fitness,fitness_threshold,p,r,m)

initializepopulation:P=Generatephypothesesatrandom

Evaluate:ForeachhinP,compute

Fitness(h)

while[max

Fitness(h)]<Fitness_thresholddo createanewgeneration,PS: 1.Select:probabilisticallyselect(1-r)pmembersofPtoaddtoPS.TheprobabilityPr(hi)ofselectinghypothesishifromPisgivenby

Pr(hi)=Fitness(hi)/∑Fitness(hj) 2.Crossover:Probabilisticallyselectr*p/2pairsofhypothesesfromP,accordingtoPr(hi)givenabove.Foreachpair,<h1,h2>,producetwooffspringbyapplyingthecrossoveroperator.AddalloffspringtoPS.

3.Mutate:choosempercentofthemembersofPSwithuniformprobability.Foreach,invertonerandomlyselectedbitinitsrepresentation. 4.update:P=PS

5.Evaluate:foreachhinP,computeFitness(h)ReturnthehypothesisfromPthathasthehighestfitness9.2.1RepresentingHypothesesHypothesesareoftenberepresentedbybitstrings,sotheycanbeeasilymanipulatedbygeneticoperatorsExample:codingif-thenrulesbybitstringsFirstuseabitstringtodescribeaconstraintonthevalueofasingleattributeOutlook:Sunny、Overcast、Rain,canberepresenttedbyabitstringoflengththreeArulecaneasilyberepresentedbyconcatenatingthecorrespondingbitstrings9.2.1RepresentingHypothesesNOTEAbitstringforarulecontainsasubstringforeachattributeinahypothesisspace,evenifaattributeisnotconstrainedbytherulepreconditionsSubstringsofabitstringatspecificlocationsdescribeconstraintsonspecificattributesRepresentationofsetsofrules:concatenatingbitstringsofindividualrulesAsyntacticallylegalbitstringshouldrepresentawell-definedhypothesisHypothesescanberepresentedbysymbolicdescriptionsratherthanbitstrings,forexample,computerprogram9.2.2GeneticoperatorsThegenerationofsuccessorsinaGAisdeterminedbyasetofoperatorsthatrecombineandmutateselectedmembersofthecurrentpopulation.TypicalGAoperatorsformanipulatingbitstringhypothesesinTable9.2Themostcommonoperators:crossoverandmutationThecrossoveroperator:ProducestwonewoffspringfromtwoparentsstringsbycopyingselectedbitsfromeachparentThechoiceofwhichparentcontributesthebitpositioniisdeterminedbyanadditionalstringcalledthecrossovermask:SinglepointcrossoverTwo-pointcrossoverUniformcrossover9.2.2Geneticoperators(2)Mutationoperator:ProducesoffspringfromasingleparentandproducessmallchangestothebitstringMutationisoftenperformedaftercrossoverhasbeenappliedAdditionaloperatorsSpecializingtotheparticularhypothesisrepresentationGeneralizeandspecializerulesinavarietyofdirectedways9.2.3FitnessFunctionandSelectionThefitnessfunctiondefinesthecriterionforrankingpotentialhypothesesIfthetaskistolearnclassificationrules,thenthefitnessfunctiontypicallyhasacomponentthatscorestheclassificationaccuracy(complexityorgenerality)oftheruleoverasetofprovidedtrainingexamples.AprobabilitymethodforselectingahypothesisFitnessproportionateselection(roulette

whellselection),theprobabilityofselectingahisgibvenbytheratioofitsfitnesstothefitnessofothermemberofthecurrentpopulationTournamentselectionRankselection9.3AnIllustrativeExampleAGAcanbeviewedasageneraloptimizationmethodthatsearchesalargespaceofcandidateobjectsseekingonethatperformsbestaccordingtothefitnessfunctionAlthoughnotguaranteedtofindanoptimalobject,GAsoftensucceedinfindinganobjectwithhighfitnessApplicationofGACircuitlayoutJob-shopschedulingFunction-approximationChoosingthenetworktopologyfoeANNGabilSystemDevelopedbyDejongetal.1993.GabilusesaGAtolearnbooleanconceptsThoseconceptsrepresentedbyadisjunctivesetofpropositionrulesItsgeneralizationaccuracyisroughlycomparabletootheralgorithmssuchasC4.5andtherulelearningsystemThealgorithmusedbyGabilisthealgorithmdescribedinTable9.1.Gabilsystem(2)GabilImplementationRepresentation:eachhinGabilcorrespondstoadisjunctivesetofpropositionalrules,encodedasdescribedinsection9.2.1Geneticoperators:MutationoperatorThecrossoveroperator:anextensiontothetwo-pointcrossoveroperatorFitnessfunction:thefitnessofeachhypothesizedrulesetisbasedonitsclassificationaccuracyoverthetrainingdata,Fitness(h)=(correct(h))29.3.1ExtensionsTheadditionoftwonewgeneticoperatorsAddAlternativeDropConditionApplicationMethodTwooperatorswereapplywiththesameprobabilitytoeachhypothesisinthepopulationThebit-stringforhwasextendedtoincludetwobitsthatdeterminewhichoftheseoperatorsmaybeappliedtotheh9.4HypothesisSpaceSearchGAsemployarandomizedbeamsearchmethodtoseekamaximallyfithypothesisThegradientdescentsearchmovessmoothlyfromonehtoanewhthatisverysimilarTheGAcanmovemuchmoreabruptlyTheGAsearchisthereforelesslikelytofallintothesamekindoflocalminimaOnepracticaldifficultyinGAapplicationsistheproblemofcrowding.crowdingisaphenomenoninwhichsomeindividualthatismorehighlyfitthanothersquicklyreproduces,sothatcopiesofthisindividualandverysimilarindividualstakeoveralargefractionofthepopulationItreducesthediversityofthepopulation,therebyslowingfurtherprogressbytheGAHypothesisspacesearch(2)StrategiesforreducingcrowdingAltertheselectionfunction,usingtournamentselectionorrankselectioninplaceoffitnessproportionateroulettewheelselectionFitnesssharing,thefitnessofanindividualisreducedbythepresenceofother,similarindividualsRestrictthekindsofindividualsallowedtorecombinetoformoffspringAllowingonlythemostsimilarindividualstorecombineSpatiallydistributeindividualsandallowonlynearbyindividualstorecombine9.4.1PopulationEvolutionandtheSchemaTheoremTheschematheoremprovidesawaytomathematicallycharacterizetheevolutionovertimeofthepopulationwithinaGA(Holland1975Aschemaisanystringcomposedof0s,1sand*sTheschematheoremcharacterizestheevolutionofthepopulationwithinaGAintermsofthenumberofinstancesrepresentingeachschemaLetm(s,t)denotethenumberofinstancesofschemasinthepopulationattimetTheschematheoremdescribestheexpectedvalueofm(s,t+1)intermsofm(s,t)andotherpropertiesoftheschema,population,andGAalgorithmparametersPopulationEvolutionandtheSchemaTheorem(2)TheevolutionofthepopulationintheGAdependsontheselectionstep,therecombinationstep,andthemutationstepnotations:f(h):fitnessofhn:totalnumberofindividualstheaveragefitnessofallindividualstheaveragefitneeofinstancesofschemasattimetindicatethehisbotharepresentativeofschemaandamemberofthepopulationattimetPopulationEvolutionandtheSchemaTheorem(3)CalculatingE(m(s,t+1))usingtheprobabilitydistributionforselectionEquation9.3statesthattheexpectednumberofinstancesofschemasatt+1isproportionaltotheaveragefitness,andinverselyproportionaltoPopulationEvolutionandtheSchemaTheorem(4)Consideringthecrossoverstepandmutationsteps(consideringthenegativeinfluenceofgeneticoperatorsandonlythecaseofsingle-pointcrossover)

Schematheoremisincompleteisthatitfailstoconsiderthepositiveeffectsofcrossoverandmutation9.5GENETICPRPGRAMMINGGPisaformofevolutionarycomputationinwhichtheindividualsarecomputerprogramsratherthanbitstringsProgramsaretypicallyrepresentedbytreescorrespondingtotheparsetreeoftheprogram,eachfunctioncallisanode,theargumentstothefunctionaregivenbydescendantnodesGPmaintainsapopulationofindividuals,oneachiteration,itproduceanewgenerationofindividualsusingselection,crossover,andmutationThefitnessofanindividualisdeterminedbyexecutingtheprogramonasetoftrainingdataCrossoveroperationsareperformedbyreplacingarandomlychosensubtreeofoneparentprogrambyasuntreefromtheotherparentprogram9.5.2IllustrativeExampleLearninganalgorithmforstackingtheblocks(fig9-3)(Koza1992)DevelopageneralalgorithmforstackingtheblocksintoasinglestackthatspellsawordindependentoftheinitialconfigurationoftheblocksTheactionsavailableallowmovingonlyasingleblockatatime,thetopblockcanbemovedtothetablesurface,orablockonthetablesurfacecanbemovedtothetopofthestackTheprimitivefunctionsforthistaskinclude3terminalarguments:CS(currentstack)TB(topcorrectblock)NN(nextnecessary),9.5.2IllustrativeExample(2)OtherprimitiveintheprogramlanguageMSx:movetostackMTx:movetotableEQxy:equalNOTx:returnTifx=F,returnF,ifx=TDUxy:dountilKozaprovided166trainingsamples,thefitnessofanygivenprogramwastakentobenthenumberoftheseexamplessolvedbythealgorithmThepopulationwasasetof300randomprograms,after10generations,thesystemfindaprogramwhichsolveall166problems

(EQ(DU(MTCS)(NOTCS))(DU(MSNN)(NOTNN)))9.5.3RemarksongeneticProgrammingGPextendsGAtotheevolutionofcompletecomputerprograms.DespiteofthehugesizeofH,GPhasbeendemonstratedtoproduceintriguingresultsinanumberofapplicationsGPhasbeenusedinseveralmorecomplextasksDesigningelectronicfiltercircuitsClassifyingsegmentsofproteinmoleculesInmostcases,theperformanceofGPdependsoncruciallyonthechoiceofrepresentationandonthechoiceoffitnessfunction.9.6ModelsofEvolutionandLearningOneinterestingquestionregardingevolutionarysystem:whatistherelationshipbetweenlearningduringthelifetimeofasingleindividual,andthelongertimeframespecies-levellearningaffordedbyevolution?LamarckianEvolutionEvolutionovermanygenerationswasdirectlyinfluencedbytheexperiencesofindividualorganismsduringtheirlifetimeCurrentscientificevidenceoverwhelminglycontradictsLamarck’smodelRecentcomputerstudieshaveshownthatLamackianprocesscansometimesimprovetheeffectivenessofcomputerizedgeneticalgorithmsModelsofEvolutionandLearning(2)BaldwinEffectIndividuallearningcanalterthecourseofevolutionItisbasedonthefollowingobservationsIfaspeciesisevolvinginachangingenvironment,therewillbeevolutionarypressuretofavorindividualswiththecapabilitytolearnduringtheirlifetime.Thoseindividualswhoareabletolearnmanytraitswillrelylessstronglyontheirgeneticcodeto“hard-wire”traits.Providesanindirectmechanismforindividuallearningtopositivelyimpacttherateofevolutionaryprogress.ModelsofEvolutionAndLea

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论