版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页湖北省枣阳市阳光中学2024年数学九年级第一学期开学统考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为()A.4 B.9 C.10 D.4+2、(4分)直线过点,,则的值是()A. B. C. D.3、(4分)如图,中,,,点在反比例函数的图象上,交反比例函数的图象于点,且,则的值为()A. B. C. D.4、(4分)如图,⊙O的直径AB,C,D是⊙O上的两点,若∠ADC=20°,则∠CAB的度数为()A.40° B.80° C.70° D.50°5、(4分)如图,把长方形纸片纸沿对角线折叠,设重叠部分为△,那么,下列说法错误的是()A.△是等腰三角形,B.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形6、(4分)一组数据3,5,4,7,10的中位数是()A.4 B.5 C.6 D.77、(4分)若二次根式有意义,则x的取值范围是()A. B. C. D.8、(4分)若二次根式有意义,则x的取值范围是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,把放在平面直角坐标系中,,,点A、B的坐标分别为、,将沿x轴向右平移,当点C落在直线上时,线段BC扫过的面积为______.10、(4分)如图,某自动感应门的正上方处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时(米),感应门自动打开,则_________米.11、(4分)直角三角形的两直角边是3和4,则斜边是____________12、(4分)在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)13、(4分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.三、解答题(本大题共5个小题,共48分)14、(12分)为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台价格,月处理污水量极消耗费如下表:经预算,该企业购买设备的资金不高于105万元.⑴请你为企业设计几种购买方案.⑵若企业每月产生污水2040吨,为了节约资金,应选那种方案?15、(8分)计算:(1)(1-)+|1-2|+×.(2)(+2)÷-.16、(8分)在中,,,点是的中点,点是射线上一点,于点,且,连接,作于点,交直线于点.(1)如图(1),当点在线段上时,判断和的数量关系,并加以证明;(2)如图(2),当点在线段的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当和面积相等时,点与点之间的距离;如果不成立,请说明理由.17、(10分)如图1,四边形ABCD中,AD//BC,∠ADC=90°,AD=8,BC=CD=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ,设运动时间为t秒.(1)连接AN、CP,当t为何值时,四边形ANCP为平行四边形;(2)求出点B到AC的距离;(3)如图2,将ΔAQM沿AD翻折,得ΔAKM,是否存在某时刻t,使四边形AQMK为菱形,若存在,求t的值;若不存在,请说明理由18、(10分)以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,正方形中,,点在边上,且.将沿对折至,延长交边于点,连接、.则下列结论:①:②;③:④.其中正确的有_(把你认为正确结论的序号都填上)20、(4分)命题“全等三角形的面积相等”的逆命题是__________21、(4分)如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,CE=3,则DF_____.22、(4分)某种服装原价每件80元,经两次降价,现售价每件1.8元,这种服装平均每次降价的百分率是________。23、(4分)在一次函数y=(2﹣m)x+1中,y随x的增大而减小,则m的取值范围是_____.二、解答题(本大题共3个小题,共30分)24、(8分)已知平面直角坐标系中,点P的坐标为(1)当m为何值时,点P到x轴的距离为1?(2)当m为何值时,点P到y轴的距离为2?(3)点P可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m的值;若不可能,请说明理由.25、(10分)如图,已知,,,,,试求阴影部分的面积.26、(12分)如图,在正方形网格中每个小正方形的边长为1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)在图(1)网格中画出长为的线段AB.(2)在图(2)网格中画出一个腰长为,面积为3的等腰
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,∴=5,解得,AD=5,又∵BC∥AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=2,∴DE=AD−AE=5−2=3,∴CD==,∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+=4+,故选D.此题考查动点问题的函数图象,解题关键在于利用勾股定理进行计算2、B【解析】
分别将点,代入即可计算解答.【详解】解:分别将点,代入,得:,解得,故答案为:B.本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.3、D【解析】
过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴,利用AA定理和平行证得△COE∽△OBF∽△AOD,然后根据相似三角形的性质求得,,根据反比例函数比例系数的几何意义求得,从而求得,从而求得k的值.【详解】解:过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴∴CE∥AD,∠CEO=∠BFO=90°∵∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE∽△OBF∽△AOD又∵,∴,∴,∴∵点在反比例函数的图象上∴∴∴,解得k=±8又∵反比例函数位于第二象限,∴k=-8故选:D.本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.4、C【解析】
先根据圆周角定理的推论得出∠ACB=90°,然后根据圆周角定理得到∠D=∠B,最后利用∠CAB=90°-∠B即可求解.【详解】∵AB是直径,∴∠ACB=90°,∵∠D=∠B=20°,∴∠CAB=90°-∠B=90°﹣20°=70°.故选:C.本题主要考查圆周角定理及其推论,直角三角形两锐角互余,掌握圆周角定理及其推论是解题的关键.5、B【解析】
根据长方形的性质得到∠BAE=∠DCE=90°,AB=CD,再由对顶角相等可得∠AEB=∠CED,推出△EBA≌△EDC,根据等腰三角形的性质即可得到结论,依此可得A、C、D正确;无法判断∠ABE和∠CBD是否相等.【详解】∵四边形ABCD为长方形∴∠BAE=∠DCE=90°,AB=CD,在△EBA和△EDC中,∵∠AEB=∠CED,∠BAE=∠DCE,AB=CD,∴△EBA≌△EDC(AAS),∴BE=DE,∴△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形,故A、C、D正确,无法判断∠ABE和∠CBD是否相等,B选项错误;故选B.本题考查全等三角形的判定与性质以及等腰三角形的判定和性质,熟练掌握折叠的性质得出全等条件是解题的关键.6、B【解析】
根据中位数的概念求解.【详解】这组数据按照从小到大的顺序排列为:3,4,1,7,10,则中位数为:1.故选:B.本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7、D【解析】试题分析:根据二次根式的意义,可知其被开方数为非负数,因此可得x-2≥0,即x≥2.故选D8、C【解析】
根据二次根式有意义的条件“被开方数大于或等于0”进行求解即可.【详解】∵二次根式有意义,∴,∴,故选:C.本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、14【解析】
先求AC的长,即求C的坐标,由平移性质得,平移的距离,因此可求线段BC扫过的面积.【详解】点A、B的坐标分别为、,,在中,,,,,由于沿x轴平移,点纵坐标不变,且点C落在直线上时,,,平移的距离为,扫过面积,故答案为:14本题考查了一次函数图象上点的坐标特征,平移的性质,关键是找到平移的距离.10、1.1【解析】
过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.【详解】解:如图,过点D作DE⊥AB于点E,依题意知,BE=CD=1.6米,ED=BC=1.2米,AB=2.1米,则AE=AB−BE=2.1−1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD==1.1(米)故答案是:1.1.本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AD的长度.11、1【解析】
在直角三角形中,已知两直角边根据勾股定理可以计算斜边.【详解】在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==1,故答案为1.本题考查了直角三角形中的运用,本题中正确的运用勾股定理求斜边的长是解题的关键.12、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.13、1【解析】
求出x1,x2即可解答.【详解】解:∵x2﹣x=0,∴x(x﹣1)=0,∵x1<x2,∴解得:x1=0,x2=1,则x2﹣x1=1﹣0=1.故答案为:1.本题考查一元二次方程的根求解,按照固定过程求解即可,较为简单.三、解答题(本大题共5个小题,共48分)14、(1)有三种购买方案:方案一:不买A型,买B型10台,方案二,买A型1台,B型9台,方案三,买A型2台,B型8台;(2)为了节约资金应购买A型1台,B型9台,即方案二.【解析】
(1)设购买污水处理设备A型x台,则B型(10-x)台,列出不等式求解即可,x的值取正整数;
(2)根据企业每月产生的污水量为2040吨,列出不等式求解,再根据x的值选出最佳方案.【详解】解:(1)设购买污水处理设备A型x台,则B型(10-x)台,根据题意得
,解得0≤x≤,
∵x为整数,
∴x可取0,1,2,
当x=0时,10-x=10,
当x=1,时10-x=9,
当x=2,时10-x=8,
即有三种购买方案:
方案一:不买A型,买B型10台,
方案二,买A型1台,B型9台,
方案三,买A型2台,B型8台;
(2)由240x+200(10-x)≥2040
解得x≥1
由(1)得1≤x≤
故x=1或x=2
当x=1时,购买资金12×1+10×9=102(万元)
当x=2时,购买资金12×2+10×8=104(万元)
∵104>102
∴为了节约资金应购买A型1台,B型9台,即方案二.本题考查不等式组在现实生活中的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出不等式关系式是解题关键.15、.(1)3+2;(2)2.【解析】
(1)先去绝对值和乘法,再计算加减即可;(2)先计算除法和化简二次根式,再相加减即可;【详解】(1)原式=1-+2-1+2=+2(2)原式=.=2.考查了二次根式的混合运算,解题关键熟记运算顺序和法则.16、(1),证明见解析;(2)依然成立,点与点之间的距离为.理由见解析.【解析】
(1)做辅助线,通过已知条件证得与是等腰直角三角形.证出,利用全等的性质即可得到.(2)设AH,DF交于点G,可根据ASA证明△FCE≌△HFG,从而得到,当和均为等腰直角三角形当他们面积相等时,.利用勾股定理可以求DE、CE的长,即可求出CE的长,即可求得点与点之间的距离.【详解】(1)证明:延长交于点∵在中,,,∴∵于点,且,∴,与是等腰直角三角形.∴,,,∴,∵点是的中点,∴,∴∴∵于点,∴,∴∴∴∴;(2)依然成立理由:设AH,DF交于点G,由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.由(1)可知和均为等腰直角三角形当他们面积相等时,.∴∴∴点与点之间的距离为.本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.17、(1)当t=2时,四边形ANCP为平行四边形;(2)点B到AC的距离185;(3)存在,t=1,使四边形AQMK为菱形【解析】
(1)先判断出四边形CNPD为矩形,然后根据四边形ANCP为平行四边形得CN=AP,即可求出t值;(2)设点B到AC的距离d,利用勾股定理先求出AC,然后根据ΔABC面积不变求出点B到AC的距离;(3)由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6-t-2t=8-(6-t),求解即可.【详解】解:(1)根据题意可得,BN=t∵在四边形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴CN=DP=BC-BN=6-t∴AP=AD-DP=8-(6-t)=2+t∵四边形ANCP为平行四边形,CN=AP,∴6-t=2+t解得:t=2,∴当t=2时,四边形ANCP为平行四边形;(2)设点B到AC的距离d,在RtΔACD中,AC=C在ΔABC中,11∴d=∴点B到AC的距离18(3)存在.理由如下:∵将ΔAQM沿AD翻折得ΔAKM∵NP⊥AD ∴当PM=PA时有四边形AQMK为菱形,∴6-t-2t=8-(6-t),解得t=1,∴t=1,使四边形AQMK为菱形.本题主要考查了四边形综合题,其中涉及到矩形的判定与性质,勾股定理,菱形的判定等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.18、(1)EB=FD;(2)EB=FD,证明见解析;(3)∠EGD不发生变化.【解析】
(1)利用正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△FAD≌△BAE,由全等三角形的性质即可得到EB=FD;(2)利用长方形的性质、等边三角形的性质和全等三角形的证明方法可证明△FAD≌△BAE,由全等三角形的性质即可得到EB=FD;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD不会发生变化,是一个定值,为60°.【详解】解:(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:不会发生改变;同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.本题考查了正方形的性质、全等三角形的判定和性质,等边三角形的性质以及矩形的性质,题目的综合性很强,难度也不小,解题的关键是对特殊几何图形的性质要准确掌握.一、填空题(本大题共5个小题,每小题4分,共20分)19、①②③④【解析】
根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;由①和翻折的性质得出△ABG≌△AFG,△ADE≌△AFE,即可得出;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF.【详解】解:①正确,∵四边形ABCD是正方形,将△ADE沿AE对折至△AFE,∴AB=AD=AF,在△ABG与△AFG中,;△ABG≌△AFG(SAS);②正确,∵由①得△ABG≌△AFG,又∵折叠的性质,△ADE≌△AFE,∴∠BAG=∠FAG,∠DAE=∠EAF,∴∠EAG=∠FAG+∠EAF=90°×=45°;③正确,∵EF=DE=CD=2,设BG=FG=x,则CG=6-x,在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3,∴BG=3=6-3=GC;④正确,∵CG=BG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF,又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.20、如果两个三角形的面积相等,那么是全等三角形【解析】
首先分清题设是:两个三角形全等,结论是:面积相等,把题设与结论互换即可得到逆命题.【详解】命题“全等三角形的面积相等”的逆命题是:如果两个三角形的面积相等,那么是全等三角形.故答案为:如果两个三角形的面积相等,那么是全等三角形本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.21、=3【解析】分析:根据直角三角形的斜边上的中线等于斜边的一半,可得AB的长,然后根据三角形的中位线的性质,求出DF的长.详解:∵在△ABC中,∠ACB=90°,E为AB的中点,CE=3∴AB=6∵D、F为AC、BC的中点∴DF=AB=3.故答案为3.点睛:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.22、10%【解析】
设这种服装平均每件降价的百分率是x,则降
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度离婚协议书起草与跨国婚姻解除服务合同3篇
- 2024年船舶照明安装协议3篇
- 2024年食品供应链合作合同标准模板一
- 2024版个人借款协议含第三方担保条款版B版
- 2025年度影视基地场地租赁及拍摄制作服务协议3篇
- 2024生物医药研发过程中数据共享协议
- 2024年金融衍生品期货交易合同规范文本3篇
- 2024年虚拟展览开发合同3篇
- 2024年绿色金融融资居间服务合同范本3篇
- 2024年集装箱房屋买卖法律合同书样本版B版
- 2024年山东省淄博市中考数学试卷(附答案)
- 合作社股权转让协议书参考
- 车辆火灾应急处置
- 食品安全与传染病预防
- 《济南联通公司成本管理问题及解决策略7000字论文》
- 191118-锂离子电池专业术语英语对照大全
- 2024全新网络与数据安全培训
- 2023年贵州黔东南州州直机关遴选公务员笔试真题
- 心脑血管疾病预防课件
- DB35T 1036-2023 10kV及以下电力用户业扩工程技术规范
- 中国移动自智网络白皮书(2024) 强化自智网络价值引领加速迈进L4级新阶段
评论
0/150
提交评论