北京市师达中学2025届九上数学开学综合测试试题【含答案】_第1页
北京市师达中学2025届九上数学开学综合测试试题【含答案】_第2页
北京市师达中学2025届九上数学开学综合测试试题【含答案】_第3页
北京市师达中学2025届九上数学开学综合测试试题【含答案】_第4页
北京市师达中学2025届九上数学开学综合测试试题【含答案】_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页北京市师达中学2025届九上数学开学综合测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a<0;②a-b+c<0;③b2-4ac>0;④2a+b>0,其中正确的是()A.①②③④ B.②③④ C.①②③ D.①②④2、(4分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.3,4,5 D.1,,3、(4分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为()A.1 B.2 C.3 D.44、(4分)下面哪个点在函数的图象上()A. B. C. D.5、(4分)木匠有32米的木材,想要在花圃周围做边界,以下四种设计方案中,设计不合理的是()A. B. C. D.6、(4分)将100个数据分成①-⑧组,如下表所示:组号①②③④⑤⑥⑦⑧频数4812241873那么第④组的频率为()A.0.24 B.0.26 C.24 D.267、(4分)如图,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是()A.BO=DO B.CD=AB C.∠BAD=∠BCD D.AC=BD8、(4分)矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为()A.10cm2 B.15cm2 C.12cm2 D.10cm2或15cm2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)因式分解:___________.10、(4分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们次还原魔方所用时间的平均值与方差:甲乙丙丁(秒)要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择________同学.11、(4分)函数y=36x-10的图象经过第______象限.12、(4分)函数的定义域是__________.13、(4分)▱ABCD中,∠A=50°,则∠D=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,,平分,且交于点,平分,且交于点,与相交于点,连接(1)求证:四边形是菱形.(2)若,,求的长.15、(8分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.(1)若∠F=62°,求∠D的度数;(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.16、(8分)如图,一次函数y1=2x+2的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,4),求点A的坐标及反比例函数的表达式.17、(10分)(1)计算:(2)化简18、(10分)如图,四边形是正方形,是边上一点,是的中点,平分.(1)判断与的数量关系,并说明理由;(2)求证:;(3)若,求的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为_____cm.20、(4分)已知菱形两条对角线的长分别为12和16,则这个菱形的周长为______.21、(4分)当=______时,分式的值为0.22、(4分)在数轴上表示实数a的点如图所示,化简(a-5)2+|a-2|的结果为____________.23、(4分)某n边形的每个外角都等于它相邻内角的,则n=_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地。两车同时出发,匀速行驶。图2是客车、货车离C站的路程y,y(千米)与行驶时间x(小时)之间的函数关系图象。(1)填空:A,B两地相距___千米;货车的速度是___千米/时。(2)求两小时后,货车离C站的路程y与行驶时间x之间的函数表达式;(3)客、货两车何时距离不大于30km?25、(10分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.26、(12分)关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】分析:根据抛物线开口方向得a<0,可对①进行判断;把x=-1代入y=ax2+bx+c,可对②进行判断;根据抛物线与x轴的交点可对③进行判断,根据抛物线的对称轴小于1,可对④进行判断.详解:抛物线开口向下:a<0,

故①正确;

当x=-1时,

y=a-b+c<0,

故②正确;

抛物线与x轴有两个交点,

∴b2-4ac>0,

故③正确,

由图象知<1,则2a+b<0,故④错误.故选C.点睛:本题考查了二次函数图象与系数的关系,二次函数y=ax²+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.2、C【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.4+5≠6,不能构成直角三角形,故不符合题意;B.2+3≠4,不能构成直角三角形,故不符合题意;C.3+4=5,能构成直角三角形,故符合题意;D.1+()≠(),不能构成直角三角形,故不符合题意。故选C.此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算3、B【解析】

根据平行四边形的性质可得∠AFB=∠FBC,由角平分线可得∠ABF=∠FBC,所以∠AFB=∠ABF,所以AF=AB=1,同理可得DF=CD=1,则根据EF=AF+DF-AD即可求解.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=10,DC=AB=1.∴∠AFB=∠FBC.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠AFB=∠ABF.∴AF=AB=1.同理可得DF=DC=1.∴EF=AF+DF﹣AD=1+1﹣10=2.故选:B.本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.4、B【解析】

把各点坐标代入解析式即可求解.【详解】A.,y=4×1-2=2≠-2,故不在直线上;B.,y=4×3-2=10,故在直线上;C.,y=4×0.5-2=0,故不在直线上;D.,y=4×(-3)-2=-14,故不在直线上.故选B.此题主要考查一次函数的图像,解题的关键是熟知坐标的代入求解.5、A【解析】

根据平移的性质以及矩形的周长公式分别求出各图形的周长即可得解.【详解】A、∵垂线段最短,∴平行四边形的另一边一定大于6m,∵2(10+6)=32m,∴周长一定大于32m;B、周长=2(10+6)=32m;C、周长=2(10+6)=32m;D、周长=2(10+6)=32m;故选:A.本题考查了矩形的周长,平行四边形的周长公式,平移的性质,根据平移的性质第三个图形、第四个图形的周长相当于矩形的周长是解题的关键.6、A【解析】

先根据数据总数和表格中的数据,可以计算得到第④组的频数;再根据频率=频数÷总数进行计算.【详解】解:根据表格中的数据,得第④组的频数为100−(4+8+12+1+18+7+3)=1,所以其频率为1÷100=0.1.故选:A.本题考查频数、频率的计算方法.用到的知识点:各组的频数之和等于数据总数;频率=频数÷总数.7、D【解析】试题分析:根据平行四边形的性质判断即可:A、∵四边形ABCD是平行四边形,∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴CD=AB(平行四边形的对边相等),正确,不符合题意;C、∵四边形ABCD是平行四边形,∴∠BAD=∠BCD(平行四边形的对角相等),正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意.故选D.8、D【解析】

根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.【详解】解:∵四边形ABCD是矩形,

∴AB=CD,AD=BC,AD∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠AEB=∠ABE,

∴AB=AE,当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.

∴矩形ABCD的面积是:1×5=10cm1;

当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,

∴矩形ABCD的面积是:5×3=15cm1.

故矩形的面积是:10cm1或15cm1.

故选:D.本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

直接提取公因式2,进行分解因式即可.【详解】2(a-b).故答案为:2(a-b).此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10、丁【解析】

据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:因为乙和丁的方差最小,但丁平均数最小,

所以丁还原魔方用时少又发挥稳定.

故应该选择丁同学.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11、【解析】

根据y=kx+b(k≠0,且k,b为常数),当k>0,b<0时,函数图象过一、三、四象限.【详解】解:因为函数中,,,所以函数图象过一、三、四象限,故答案为:一、三、四.此题主要考查了一次函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.12、【解析】

根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.【详解】根据题意得:x-1≥0,解得:x≥1.故答案为:.此题考查二次根式,解题关键在于掌握二次根式有意义的条件.13、130°【解析】根据平行四边形的邻角互补,则∠D=三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)AD=.【解析】

(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出结论;(2)根据菱形的性质可得∠AOD=90°,OD=3,然后在Rt△AOD中利用勾股定理列方程求出AO即可解决问题.【详解】(1)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴平行四边形四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=6,∴∠AOD=90°,OD=3,∵,∴AD=2AO,在Rt△AOD中,AD2=AO2+OD2,即4AO2=AO2+9,∴AO=,∴AD=2AO=.本题主要考查了平行线的性质、角平分线定义、等腰三角形的判定、平行四边形的判定、菱形的判定和性质、含30度直角三角形的性质以及勾股定理,熟练掌握菱形的判定定理和性质定理是解题的关键.15、(1)(2)【解析】

(1)由四边形ABCD是平行四边形,∠F=62°,易求得∠BAE的度数,又由AB=BE,即可求得∠B的度数,然后由平形四边形的对角相等,即可求得∠D的度数;(2)根据相似三角形的性质求出△FEC与△FAD的相似比,得到其面积比,再找到△FEC与平行四边形的关系,求出平行四边形的面积.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAF=∠F=62°,∵AB=BE,∴∠AEB=∠BAE=62°,∴∠B=180°-∠BAE-∠AEB=56°,∵在平行四边形ABCD中,∠D=∠B,∴∠D=56°.(2)∵DC∥AB,∴△CEF∽△BEA.∵BE=3EC∴,∵S△EFC=1.∴S△ABE=9a,∵∴∴∴∵∴此题考查了平行四边形的性质与相似三角形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.16、A的坐标是(1,4),y2=.【解析】

把y=4代入y1=2x+2可求得A的横坐标,则A的坐标即可确定,再利用待定系数法求得反比例函数的解析式.【详解】把y=4代入y=2x+2,得2x+2=4,解得:x=1,则A的坐标是(1,4).把(1,4)代入y2=得:k=1×4=4,则反比例函数的解析式是:y2=.本题考查了反比例函数与一次函数的交点问题,解题的关键是熟知待定系数法的运用.17、(1)-9;(2)【解析】

(1)根据二次根式的乘法法则运算;(2)先二次根式的除法法则计算,然后把二次根式化为最简二次根式后合并即可。【详解】解:(1)原式=2×(﹣3)×=﹣9;(2)原式===.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可。在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18、(1)见解析;(2)见解析;(3).【解析】

(1)利用平行线的性质得出,再根据角平分线的性质即可解答(2)过点作交于点,连接,利用HL证明,即可解答(3)设,则,再利用勾股定理求出a即可解答.【详解】(1)如图所示:与的数量关系:,理由如下:,∵平分,,.(2)如图所示:过点作交于点,连接.∵平分,,又是的中点,,,在和中,,,又,.(3)设,则,在中,由勾股定理得:解得:,.此题考查全等三角形的判定与性质,勾股定理,角平分线的性质,平行线的性质,解题关键在于作辅助线.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】

根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC,BD交于点O,∵B、E、F、D四点在同一条直线上,∴E,F在BD上,∵正方形AECF的面积为50cm2,∴AC2=50,AC=10cm,∵菱形ABCD的面积为120cm2,∴=120,BD=24cm,所以菱形的边长AB==1cm.故答案为:1.此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.20、1【解析】

根据菱形的对角线互相垂直平分,利用勾股定理即可解决.【详解】如图,四边形ABCD是菱形,AC=12,BD=16,

∵四边形ABCD是菱形,

∴AC⊥BC,AB=BC=CD=AD,AO=OC=6,OB=OD=8,

在Rt△AOB中,AB=,

∴菱形ABCD周长为1.

故答案为1

本题考查菱形的性质、勾股定理等知识,记住菱形的对角线互相垂直平分、菱形的四边相等是解决问题的关键,属于中考常考题型.21、-2【解析】

分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.【详解】分式的值为1,即|x|-2=1,x=±2,∵x-2≠1,∴x≠2,即x=-2,故当x=-2时,分式的值为1.故答案为:-2.此题考查了分式的值为1的条件.由于该类型的题易忽略分母不为1这个条件,所以常以这个知识点来命题.22、3.【解析】试题分析:由数轴得知,a>2,且a<5,所以a-5<0,a-2>0,原式化简=5-a+a-2=3.故答案为3.考点:绝对值意义与化简.23、1.【解析】

根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.【详解】解:因为多边形的每个外角和它相邻内角的和为180°,又因为每个外角都等于它相邻内角的,所以外角度数为180°×=36°.∵多边形的外角和为360°,所以n=360÷36=1.故答案为:1.本题考查多边形的内角与外角关系,以及多边形的外角和为360°.二、解答题(本大题共3个小题,共30分)24、(1)420,30;(2)y=30x−60;(3)当客车行驶的时间x,⩽x⩽5时,客、货两车相距不大于30千米.【解析】

(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【详解】(1)由题意和图象可得,A,B两地相距:360+60=420千米,货车的速度=60÷2=30千米/小时,故答案为:420,30;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论