版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏州高新区实验初级中学2025届高二上数学期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.1102.已知点B是A(3,4,5)在坐标平面xOy内的射影,则||=()A. B.C.5 D.53.空间直角坐标系中、、)、,其中,,,,已知平面平面,则平面与平面间的距离为()A. B.C. D.4.已知直线过点,且与直线垂直,则直线的方程是()A. B.C. D.5.在各项都为正数的等比数列中,首项,前3项和为21,则()A.84 B.72C.33 D.1896.命题“,使”的否定是()A.,有 B.,有C.,使 D.,使7.设直线的倾斜角为,且,则满足A. B.C. D.8.边长为的正方形沿对角线折成直二面角,、分别为、的中点,是正方形的中心,则的大小为()A. B.C. D.9.执行如图所示的程序框图,输出的值为()A. B.C. D.10.已知直线,两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则11.下列直线中,倾斜角最大的为()A. B.C. D.12.已知椭圆是椭圆上关于原点对称的两点,设以为对角线的椭圆内接平行四边形的一组邻边斜率分别为,则()A.1 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与双曲线交于两点,则该双曲线的离心率的取值范围是______14.在棱长为2的正方体中,点P是直线上的一个动点,点Q在平面上,则的最小值为________.15.已知函数,则曲线在点处的切线方程为______.16.圆心在x轴上且过点的一个圆的标准方程可以是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的一个焦点与抛物线的焦点重合,椭圆上的动点到焦点的最大距离为.(1)求椭圆的标准方程;(2)过作一条不与坐标轴垂直的直线交椭圆于两点,弦的中垂线交轴于,当变化时,是否为定值?若是,定值为多少?18.(12分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了名学生的得分(得分均为整数,满分为分)进行统计,所有学生的得分都不低于分,将这名学生的得分进行分组,第一组,第二组,第三组,第四组(单位:分),得到如下的频率分布直方图(1)求图中的值,估计此次竞赛活动学生得分的中位数;(2)根据频率分布直方图,估计此次竞赛活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计在参赛的名学生中有多少名学生获奖19.(12分)在数列中,,且,(1)求的通项公式;(2)求的前n项和的最大值20.(12分)已知:在四棱锥中,底面为正方形,侧棱平面,点为中点,.(1)求证:平面平面;(2)求直线与平面所成角大小;(3)求点到平面的距离.21.(12分)已知函数,(1)求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数的取值范围22.(10分)已知椭圆C:的离心率为,点为椭圆C上一点(1)求椭圆C的方程;(2)若M,N是椭圆C上的两个动点,且的角平分线总是垂直于y轴,求证:直线MN的斜率为定值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:2、C【解析】先求出B(3,4,0),由此能求出||【详解】解:∵点B是点A(3,4,5)在坐标平面Oxy内的射影,∴B(3,4,0),则||==5故选:C3、A【解析】由已知得,,,设向量与向量、都垂直,由向量垂直的坐标运算可求得,再由平面平行和距离公式计算可得选项.【详解】解:由已知得,,,设向量与向量、都垂直,则,即,取,,又平面平面,则平面与平面间的距离为,故选:A.4、D【解析】由题意设直线方程为,然后将点坐标代入求出,从而可求出直线方程【详解】因为直线与直线垂直,所以设直线方程为,因为直线过点,所以,得,所以直线方程为,故选:D5、A【解析】分析:设等比数列的公比为,根据前三项的和为列方程,结合等比数列中,各项都为正数,解得,从而可以求出的值.详解:设等比数列的公比为,首项为3,前三项的和为,,解之得或,在等比数列中,各项都为正数,公比为正数,舍去),,故选A.点睛:本题考查以一个特殊的等比数列为载体,通过求连续三项和的问题,着重考查了等比数列的通项,等比数列的性质和前项和等知识点,属于简单题.6、B【解析】根据特称命题的否定是全称命题即可得正确答案【详解】存在量词命题的否定,只需把存在量词改成全称量词,并把后面的结论否定,所以“,使”的否定为“,有”,故选:B.7、D【解析】因为,所以,,,,故选D8、B【解析】建立空间直角坐标系,以向量法去求的大小即可解决.【详解】由题意可得平面,,则两两垂直以O为原点,分别以OB、OA、OC所在直线为x、y、z轴建立空间直角坐标系则,,,,又,则故选:B9、B【解析】根据程序框图的循环逻辑写出其执行步骤,即可确定输出结果.【详解】由程序框图的逻辑,执行步骤如下:1、:执行循环,,;2、:执行循环,,;3、:执行循环,,;4、:执行循环,,;5、:执行循环,,;6、:不成立,跳出循环.∴输出的值为.故选:B.10、A【解析】根据线面、面面位置关系有关知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,根据面面垂直的判定定理可知,A选项正确,对于B选项,当,时,和可能相交,B选项错误,对于C选项,当,时,可能含于,C选项错误,对于D选项,当,时,可能含于,D选项错误.故选:A11、D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率;D.直线的斜率,因为,结合直线的斜率与倾斜角的关系,可知直线的倾斜角最大.故选:D12、C【解析】根据椭圆的对称性和平行四边形的性质进行求解即可.【详解】是椭圆上关于原点对称两点,所以不妨设,即,因为平行四边形也是中心对称图形,所以也是椭圆上关于原点对称的两点,所以不妨设,即,,得:,即,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析可知,由可求得结果.【详解】双曲线的渐近线方程为,由题意可知,.故答案为:.14、【解析】数形结合分析出的最小值为点到平面的距离,然后利用等体积法求出距离即可.【详解】因为,且平面,平面,所以平面,所以的最小值为点到平面的距离,设到平面的距离为,则,所以,即,解得,故答案为:.15、【解析】先求函数的导数,再利用导数的几何意义求函数在处的切线方程.【详解】,,,所以曲线在点处的切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,重点考查计算能力,属于基础题型.16、【解析】确定x轴上一个点做圆心,求出半径,再写出圆的标准方程即可.【详解】以x轴上的点为圆心,则半径,所以圆的标准方程为:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)是,【解析】(1)由抛物线方程求出其焦点坐标,结合椭圆的几何性质列出,的方程,解方程求,由此可得椭圆方程,(2)联立直线椭圆椭圆方程,求出弦的长和其中垂线方程,再计算,由此完成证明.【小问1详解】抛物线的交点坐标为(1,0),,又,又,∴,椭圆的标准方程为.【小问2详解】设直线的斜率为,则直线的方程为,联立消元得到,显然,,∴,又的中点坐标为,直线的中垂线的斜率为∴直线的中垂线方程为,令,,(常数).【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值18、(1),中位数为;(2)得分的平均值为,估计有260名学生获奖.【解析】(1)根据给定的频率分布直方图,利用各小矩形面积和为1计算得值;再由在中位数两侧所对小矩形面积相等即可计算得解.(2)由频率分布直方图求平均数的方法求出得分平均值即可估计;再求出不低于平均分的频率即可估计获奖人数.【小问1详解】由频率分布直方图知:,解得,设此次竞赛活动学生得分的中位数为,因数据落在内的频率为0.4,落在内的频率为0.8,从而可得,由得:,所以,估计此次竞赛活动学生得分的中位数为.【小问2详解】由频率分布直方图及(1)知:数据落在,,,的频率分别为,,此次竞赛活动学生得分不低于82的频率为,则,所以估计此次竞赛活动得分的平均值为,在参赛的名学生中估计有260名学生获奖.19、(1)(2)40【解析】(1)根据递推关系,判定数列是等差数列,然后求得首项和公差,进而得到通项公式;(2)令,求得,进而根据数列的前项和的意义求得当或5时,有最大值,进而求得和的最大值.【小问1详解】解:∵数列满足,∴,∴是等差数列,设的公差为d,则,即,解得,∴,∴【小问2详解】令,得,解得,所以当或5时,有最大值,且最大值为20、(1)证明见解析;(2);(3).【解析】(1)以AB所在的直线为x轴,以AD所在的直线为y轴,以AP所在的直线为z轴,建立如图所示的直角坐标系,求出平面PCD的法向量为,平面的法向量为,即得证;(2)设直线与平面所成角为,利用向量法求解;(3)利用向量法求点到平面的距离.【小问1详解】证明:PA平面ABCD,ABCD为正方形,以AB所在的直线为x轴,以AD所在的直线为y轴,以AP所在的直线为z轴,建立如图所示的直角坐标系.由已知可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1)M为PD的中点,,所以,,,所以,又PDAM,,平面PCDAM平面PCD.平面PCD的法向量为.设平面的法向量为,,令,则,..平面MAC平面PCD.【小问2详解】解:设直线与平面所成角为,由(1)可得:平面PCD的法向量为,,,即直线与平面所成角大小.【小问3详解】解:,设点到平面的距离为,.点到平面的距离为.21、(1);(2).【解析】(1)求出函数的导数,计算,,求出切线方程即可;(2)问题转化为,利用导函数求出的最大值,求出的范围即可.【小问1详解】因为,所以,则切线的斜率为,又因为,则切点为,所以曲线在点处的切线方程为,即【小问2详解】当时,令得,列表得x001↘极小值↗所以当时,的最大值为由题意知,故,解之得,所以实数的取值范围为.22、(1);(2)证明见解析.【解析】(1)根据椭圆的离心率公式,结合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版高科技创业企业合伙人利益共享协议3篇
- 二零二五年度出租车行业数据共享与司机权益保护合同3篇
- 2025年分公司设立及业务培训合作协议书4篇
- 二零二五年度临时职工技能提升培训合同
- 2025年度陶瓷设计工作室设计师劳动合同样本
- 万科星辰大厦2024年施工总承包合同版
- 二零二五年度城市地下空间开发土石方运输与管网铺设合同3篇
- 二零二五年度厂房租赁合同附安全风险评估协议3篇
- 二手房定金合同参考模板(2024版)
- 2025年门窗行业供应链战略合作框架协议
- 2023年四川省绵阳市中考数学试卷
- 南安市第三次全国文物普查不可移动文物-各乡镇、街道分布情况登记清单(表五)
- 选煤厂安全知识培训课件
- 项目前期选址分析报告
- 急性肺栓塞抢救流程
- 《形象价值百万》课件
- 红色文化教育国内外研究现状范文十
- 中医基础理论-肝
- 小学外来人员出入校门登记表
- 《土地利用规划学》完整课件
- GB/T 25283-2023矿产资源综合勘查评价规范
评论
0/150
提交评论