黑龙江省哈尔滨第九中学2025届数学高一上期末质量检测试题含解析_第1页
黑龙江省哈尔滨第九中学2025届数学高一上期末质量检测试题含解析_第2页
黑龙江省哈尔滨第九中学2025届数学高一上期末质量检测试题含解析_第3页
黑龙江省哈尔滨第九中学2025届数学高一上期末质量检测试题含解析_第4页
黑龙江省哈尔滨第九中学2025届数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨第九中学2025届数学高一上期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,若恰有2个零点,则实数a的取值范围是()A. B.C. D.2.指数函数在R上单调递减,则实数a的取值范围是()A. B.C. D.3.△ABC的内角、、的对边分别为、、,若,,,则()A. B.C. D.4.等于()A.2 B.12C. D.35.已知向量(2,3),(x,2),且⊥,则|23|=()A.2 B.C.12 D.136.已知函数,若函数恰有两个零点,则实数的取值范围是A. B.C. D.7.如图中的图象所表示的函数的解析式为()A.BC.D.8.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1 B.3C.5 D.79.已知,,则a,b,c的大小关系为A. B.C. D.10.已知直线,若,则的值为()A.8 B.2C. D.-2二、填空题:本大题共6小题,每小题5分,共30分。11.放射性物质镭的某种同位素,每经过一年剩下的质量是原来的.若剩下的质量不足原来的一半,则至少需要(填整数)____年.(参考数据:,)12.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.13.不等式的解集是___________.14.已知函数.则函数的最大值和最小值之积为______15.用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:f(1.6000)≈0.200f(1.5875)≈0.133f(1.5750)≈0.067f(1.5625)≈0.003f(1.5562)≈-0.029f(1.5500)≈-0.060据此数据,可得方程3x-x-4=0的一个近似解为________(精确到0.01)16.定义:关于的两个不等式和的解集分别为和,则称这两个不等式为相连不等式.如果不等式与不等式为相连不等式,且,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,侧棱平面,、分别是、的中点,点在侧棱上,且,,求证:(1)直线平面;(2)平面平面.18.设函数为常数,且的部分图象如图所示.(1)求函数的表达式;(2)求函数的单调减区间;(3)若,求的值.19.已知对数函数.(1)若函数,讨论函数的单调性;(2)对于(1)中的函数,若,不等式的解集非空,求实数的取值范围.20.如图所示,在直三棱柱中,,,,,点是中点()求证:平面()求直线与平面所成角的正切值21.已知集合,(Ⅰ)当时,求;;(Ⅱ)若,求实数的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用数形结合的方法,作出函数的图象,简单判断即可.【详解】依题意,函数的图象与直线有两个交点,作出函数图象如下图所示,由图可知,要使函数的图象与直线有两个交点,则,即.故选:B.【点睛】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.2、D【解析】由已知条件结合指数函数的性质列不等式求解即可【详解】因为指数函数在R上单调递减,所以,得,所以实数a的取值范围是,故选:D3、C【解析】由已知利用余弦定理可求的值,利用等腰三角形的性质可求的值.【详解】解:∵,,,∴由余弦定理可得,求得:c=1.∴∴.故选:C.【点睛】本题主要考查了余弦定理在解三角形中应用,属于基础题.4、C【解析】利用对数的运算法则即可得出【详解】原式=故选C.【点睛】本题考查了对数的运算法则,属于基础题5、D【解析】由,可得,由向量加法可得,再结合向量模的运算即可得解.【详解】解:由向量(2,3),(x,2),且,则,即,即,所以,所以,故选:D.【点睛】本题考查了向量垂直的坐标运算,重点考查了向量加法及模的运算,属基础题.6、A【解析】因为,且各段单调,所以实数的取值范围是,选A.点睛:已知函数零点求参数的范围的常用方法,(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解7、B【解析】分段求解:分别把0≤x≤1及1≤x≤2时解析式求出即可【详解】当0≤x≤1时,设f(x)=kx,由图象过点(1,),得k=,所以此时f(x)=x;当1≤x≤2时,设f(x)=mx+n,由图象过点(1,),(2,0),得,解得所以此时f(x)=.函数表达式可转化为:y=|x-1|(0≤x≤2)故答案为B【点睛】本题考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得8、C【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时才能驾驶,则,即由于在定义域上单调递减,∴∴他至少经过5小时才能驾驶.故选:C9、D【解析】利用指数函数与对数函数的单调性即可得出【详解】解:,,又,故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题10、D【解析】根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设所需的年数为,由已知条件可得,解该不等式即可得结论.【详解】设所需的年数为,由已知条件可得,则.因此,至少需要年.故答案为:.12、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.13、或【解析】把分式不等式转化为,从而可解不等式.【详解】因为,所以,解得或,所以不等式的解集是或.故答案为:或.14、80【解析】根据二次函数的性质直接计算可得.【详解】因为,所以当时,,当时,,所以最大值和最小值之积为.故答案为:8015、56【解析】注意到f(1.5562)=-0.029和f(1.5625)=0.003,显然f(1.5562)f(1.5625)<0,故区间的端点四舍五入可得1.56.16、##【解析】二次不等式解的边界值即为与之对应的二次方程的根,利用根与系数的关系可得,整理得,结合范围判定求值【详解】设的解集为,则的解集为由二次方程根与系数的关系可得∴,即∴,即又∵,则∴,即故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)由中位线的性质得出,由棱柱的性质可得出,由平行线的传递性可得出,进而可证明出平面;(2)证明出平面,可得出,结合可证明出平面,再由面面垂直的判定定理即可证明出结论成立.【详解】(1)、分别为、的中点,为的中位线,,为棱柱,,,平面,平面,平面;(2)在三棱柱中,平面,平面,,又且,、平面,平面,而平面,故.又,且,、平面,平面,又平面,平面平面.【点睛】本题考查线面平行和面面垂直的证明,考查推理能力,属于中等题.18、(1)(2)(3)【解析】(1)由图可以得到,,故,而的图像过,故而,结合得到.(2)利用复合函数的单调性来求所给函数的单调减区间,可令,解得函数的减区间为.(3)由得,而,所以.解析:(1)根据图象得,又,所以.又过点,所以,又,所以得:.(2)由得:.即函数的单调减区间为.(3)由,得,所以..19、(1)详见解析;(2).【解析】(1)由对数函数的定义,得到的值,进而得到函数的解析式,再根据复合函数的单调性,即可求解函数的单调性.(2)不等式的解集非空,得,利用函数的单调性,求得函数的最小值,即可求得实数的取值范围.【详解】(1)由题中可知:,解得:,所以函数的解析式,∵,∴,∴,即的定义域为,由于,令则:由对称轴可知,在单调递增,在单调递减;又因为在单调递增,故单调递增区间,单调递减区间为.(2)不等式的解集非空,所以,由(1)知,当时,函数单调递增区间,单调递减区间为,又,所以,所以,,所以实数的取值范围.20、(1)见解析(2).【解析】(1)设BC1与CB1交于点O,连接OD,利用三角形中位线性质,证明OD∥AC1,利用线面平行的判定,可得AC1∥平面CDB1(2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1,于是∠DB1E为直线DB1与平面BCC1B1所成的角.利用勾股定理求出DE,B1E,计算tan∠DB1E【详解】(1)证明:设BC1与CB1交于点O,则O为BC1的中点在△ABC1中,连接OD,∵D,O分别为AB,BC1的中点,∴OD为△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论