2023-2024学年广东省惠州市惠东高级中学高中毕业班第二次模拟(数学试题文)试卷_第1页
2023-2024学年广东省惠州市惠东高级中学高中毕业班第二次模拟(数学试题文)试卷_第2页
2023-2024学年广东省惠州市惠东高级中学高中毕业班第二次模拟(数学试题文)试卷_第3页
2023-2024学年广东省惠州市惠东高级中学高中毕业班第二次模拟(数学试题文)试卷_第4页
2023-2024学年广东省惠州市惠东高级中学高中毕业班第二次模拟(数学试题文)试卷_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年广东省惠州市惠东高级中学高中毕业班第二次模拟(数学试题文)试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数向左平移个单位,得到的图象,则满足()A.图象关于点对称,在区间上为增函数B.函数最大值为2,图象关于点对称C.图象关于直线对称,在上的最小值为1D.最小正周期为,在有两个根2.对于函数,若满足,则称为函数的一对“线性对称点”.若实数与和与为函数的两对“线性对称点”,则的最大值为()A. B. C. D.3.天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为()A. B. C. D.4.已知等差数列的前项和为,若,则等差数列公差()A.2 B. C.3 D.45.设复数满足,则()A. B. C. D.6.已知若(1-ai)(3+2i)为纯虚数,则a的值为()A. B. C. D.7.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18 B.200,20C.240,20 D.200,188.已知实数x,y满足,则的最小值等于()A. B. C. D.9.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-2810.若集合,则()A. B.C. D.11.已知下列命题:①“”的否定是“”;②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④ B.①② C.①③ D.②④12.函数在内有且只有一个零点,则a的值为()A.3 B.-3 C.2 D.-2二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,则__________.14.函数在上的最小值和最大值分别是_____________.15.已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为__________.16.如图,两个同心圆的半径分别为和,为大圆的一条直径,过点作小圆的切线交大圆于另一点,切点为,点为劣弧上的任一点(不包括两点),则的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,与是处在同-个平面内的两个全等的直角三角形,,,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六面体(1)求证:(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;(3)若平面底面,求六面体的体积的最大值.18.(12分)2019年安庆市在大力推进城市环境、人文精神建设的过程中,居民生活垃圾分类逐渐形成意识.有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识"的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图:(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布,近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P();(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:(i)得分不低于可获赠2次随机话费,得分低于则只有1次:(ii)每次赠送的随机话费和对应概率如下:赠送话费(单位:元)1020概率现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.附:,若,则,.19.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为.(1)求线段长的最小值;(2)求点的轨迹方程.20.(12分)已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)(1)求抛物线Γ的方程;(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.21.(12分)已知数列,,数列满足,n.(1)若,,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立.①当数列为等差数列时,求证:数列,的公差相等;②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.22.(10分)如图,在四棱锥中,底面是直角梯形且∥,侧面为等边三角形,且平面平面.(1)求平面与平面所成的锐二面角的大小;(2)若,且直线与平面所成角为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.2.D【解析】

根据已知有,可得,只需求出的最小值,根据,利用基本不等式,得到的最小值,即可得出结论.【详解】依题意知,与为函数的“线性对称点”,所以,故(当且仅当时取等号).又与为函数的“线性对称点,所以,所以,从而的最大值为.故选:D.【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.3.B【解析】

利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.【详解】20个年份中天干相同的有10组(每组2个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率.故选:B.【点睛】本小题主要考查古典概型的计算,考查组合数的计算,考查学生分析问题的能力,难度较易.4.C【解析】

根据等差数列的求和公式即可得出.【详解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故选C.【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.5.D【解析】

根据复数运算,即可容易求得结果.【详解】.故选:D.【点睛】本题考查复数的四则运算,属基础题.6.A【解析】

根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.【详解】由题可知原式为,该复数为纯虚数,所以.故选:A【点睛】本题考查复数的运算和复数的分类,属基础题.7.A【解析】

利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.【详解】样本容量为:(150+250+400)×30%=240,∴抽取的户主对四居室满意的人数为:故选A.【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.8.D【解析】

设,,去绝对值,根据余弦函数的性质即可求出.【详解】因为实数,满足,设,,,恒成立,,故则的最小值等于.故选:.【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.9.A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.10.A【解析】

先确定集合中的元素,然后由交集定义求解.【详解】,.故选:A.【点睛】本题考查求集合的交集运算,掌握交集定义是解题关键.11.B【解析】

由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B.【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.12.A【解析】

求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,,在单调递增,且,在不存在零点;若,,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

直接根据集合和集合求交集即可.【详解】解:,,所以.故答案为:【点睛】本题考查集合的交集运算,是基础题.14.【解析】

求导,研究函数单调性,分析,即得解【详解】由题意得,,令,解得,令,解得.在上递减,在递增.,而,故在区间上的最小值和最大值分别是.故答案为:【点睛】本题考查了导数在函数最值的求解中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题15.【解析】

如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定理求得正四棱锥的高,代入体积公式,即可得到答案.【详解】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,,,,,,.故答案为:.【点睛】本题考查棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.16.【解析】

以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,从而可得、,,,然后利用向量数量积的坐标运算可得,再根据辅助角公式以及三角函数的性质即可求解.【详解】以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,则、,由,且,所以,所以,即又平分,所以,则,设,则,,所以,所以,,所以的最大值是.故答案为:【点睛】本题考查了向量数量积的坐标运算、利用向量解决几何问题,同时考查了辅助角公式以及三角函数的性质,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)(3)【解析】

根据折叠图形,,由线面垂直的判定定理可得平面,再根据平面,得到.(2)根据,以为坐标原点,为轴建立空间直角坐标系,根据,可知,,表示相应点的坐标,分别求得平面与平面的法向量,代入求解.设所求几何体的体积为,设为高,则,表示梯形BEFD和ABD的面积由,再利用导数求最值.【详解】(1)证明:不妨设与的交点为与的交点为由题知,,则有又,则有由折叠可知所以可证由平面平面,则有平面又因为平面,所以....(2)解:依题意,有平面平面,又平面,则有平面,,又由题意知,如图所示:以为坐标原点,为轴建立如图所示的空间直角坐标系由题意知由可知,则则有,,设平面与平面的法向量分别为则有则所以因为,解得设所求几何体的体积为,设,则,当时,,当时,在是增函数,在上是减函数当时,有最大值,即六面体的体积的最大值是【点睛】本题主要考查线线垂直,线面垂直,面面垂直的转化,二面角的向量求法和空间几何体的体积,还考查了转化化归的思想和运算求解的能力,属于难题.18.(1)(2)详见解析【解析】

(1)利用频率分布直方图平均数等于小矩形的面积乘以底边中点横坐标之和,再利用正态分布的对称性进行求解.(2)写出随机变量的所有可能取值,利用互斥事件和相互独立事件同时发生的概率计算公式,再列表得到其分布列.【详解】解:(1)从这1000人问卷调查得到的平均值为∵由于得分Z服从正态分布,(2)设得分不低于分的概率为p,(或由频率分布直方图知)法一:X的取值为10,20,30,40;;;;所以X的分布列为X10203040P法二:2次随机赠送的话费及对应概率如下2次话费总和203040PX的取值为10,20,30,40;;;;所以X的分布列为X10203040P【点睛】本题考查了正态分布、离散型随机变量的分布列,属于基础题.19.(1)(2)【解析】

(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可.(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.【详解】解曲线的方程化成直角坐标方程为即圆心,半径,曲线为过定点的直线,易知在圆内,当时,线段长最小为当点与点不重合时,设,化简得当点与点重合时,也满足上式,故点的轨迹方程为【点睛】本题考查了极坐标与普通方程的互化、直线与圆的位置关系、列方程求动点的轨迹方程,属于基础题.20.(1)y2=4x;;(2)直线NL恒过定点(﹣3,0),理由见解析.【解析】

(1)根据抛物线的方程,求得焦点F(,0),利用(2,2),表示点P的坐标,再代入抛物线方程求解.(2)设M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因为A(3,﹣2),B(3,﹣6)在这两条直线上,分别代入两直线的方程可得y1y2=12,然后表示直线NL的方程为:y﹣y1(x),代入化简求解.【详解】(1)由抛物线的方程可得焦点F(,0),满足(2,2)的P的坐标为(2,2),P在抛物线上,所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以抛物线的方程为:y2=4x;(2)设M(x0,y0),N(x1,y1),L(x2,y2),则y12=4x1,y22=4x2,直线MN的斜率kMN,则直线MN的方程为:y﹣y0(x),即y①,同理可得直线ML的方程整理可得y②,将A(3,﹣2),B(3,﹣6)分别代入①,②的方程可得,消y0可得y1y2=12,易知直线kNL,则直线NL的方程为:y﹣y1(x),即yx,故yx,所以y(x+3),因此直线NL恒过定点(﹣3,0).【点睛】本题主要考查了抛物线的方程及直线与抛物线的位置关系,直线过定点问题,还考查了转化化归的思想和运算求解的能力,属于中档题.21.(1)(2)①见解析②数列不能为等比数列,见解析【解析】

(1)根据数列通项公式的特点,奇数项为等差数列,偶数项为等比数列,选用分组求和的方法进行求解;(2)①设数列的公差为,数列的公差为,当n为奇数时,得出;当n为偶数时,得出,从而可证数列,的公差相等;②利用反证法,先假设可以为等比数列,结合题意得出矛盾,进而得出数列不能为等比数列.【详解】(1)因为,,所以,且,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论